Platform

AI

AI Agents
Sense, decide, and act faster than ever before
AI Visibility
See how your brand shows up in AI search
AI Feedback
Distill what your customers say they want
Amplitude MCP
Insights from the comfort of your favorite AI tool

Insights

Product Analytics
Understand the full user journey
Marketing Analytics
Get the metrics you need with one line of code
Session Replay
Visualize sessions based on events in your product
Heatmaps
Visualize clicks, scrolls, and engagement

Action

Guides and Surveys
Guide your users and collect feedback
Feature Experimentation
Innovate with personalized product experiences
Web Experimentation
Drive conversion with A/B testing powered by data
Feature Management
Build fast, target easily, and learn as you ship
Activation
Unite data across teams

Data

Warehouse-native Amplitude
Unlock insights from your data warehouse
Data Governance
Complete data you can trust
Security & Privacy
Keep your data secure and compliant
Integrations
Connect Amplitude to hundreds of partners
Solutions
Solutions that drive business results
Deliver customer value and drive business outcomes
Amplitude Solutions →

Industry

Financial Services
Personalize the banking experience
B2B
Maximize product adoption
Media
Identify impactful content
Healthcare
Simplify the digital healthcare experience
Ecommerce
Optimize for transactions

Use Case

Acquisition
Get users hooked from day one
Retention
Understand your customers like no one else
Monetization
Turn behavior into business

Team

Product
Fuel faster growth
Data
Make trusted data accessible
Engineering
Ship faster, learn more
Marketing
Build customers for life
Executive
Power decisions, shape the future

Size

Startups
Free analytics tools for startups
Enterprise
Advanced analytics for scaling businesses
Resources

Learn

Blog
Thought leadership from industry experts
Resource Library
Expertise to guide your growth
Compare
See how we stack up against the competition
Glossary
Learn about analytics, product, and technical terms
Explore Hub
Detailed guides on product and web analytics

Connect

Community
Connect with peers in product analytics
Events
Register for live or virtual events
Customers
Discover why customers love Amplitude
Partners
Accelerate business value through our ecosystem

Support & Services

Customer Help Center
All support resources in one place: policies, customer portal, and request forms
Developer Hub
Integrate and instrument Amplitude
Academy & Training
Become an Amplitude pro
Professional Services
Drive business success with expert guidance and support
Product Updates
See what's new from Amplitude

Tools

Benchmarks
Understand how your product compares
Templates
Kickstart your analysis with custom dashboard templates
Tracking Guides
Learn how to track events and metrics with Amplitude
Maturity Model
Learn more about our digital experience maturity model
Pricing
LoginContact salesGet started

AI

AI AgentsAI VisibilityAI FeedbackAmplitude MCP

Insights

Product AnalyticsMarketing AnalyticsSession ReplayHeatmaps

Action

Guides and SurveysFeature ExperimentationWeb ExperimentationFeature ManagementActivation

Data

Warehouse-native AmplitudeData GovernanceSecurity & PrivacyIntegrations
Amplitude Solutions →

Industry

Financial ServicesB2BMediaHealthcareEcommerce

Use Case

AcquisitionRetentionMonetization

Team

ProductDataEngineeringMarketingExecutive

Size

StartupsEnterprise

Learn

BlogResource LibraryCompareGlossaryExplore Hub

Connect

CommunityEventsCustomersPartners

Support & Services

Customer Help CenterDeveloper HubAcademy & TrainingProfessional ServicesProduct Updates

Tools

BenchmarksTemplatesTracking GuidesMaturity Model
LoginSign Up

How to Leverage Customer Data to Increase Product Adoption

Learn how to activate customer data to power growth and adoption. Use it to remove user friction and build personalized customer experiences.
Insights

Aug 17, 2022

12 min read

Arpit Choudhury

Arpit Choudhury

Founder, astorik

Use customer data to increase product adoption

Think of this guide as a manual describing the steps to enable product-led growth (PLG) for a B2B SaaS product in 2022. This guide is less conceptual and more actionable and is relevant for growth professionals from companies that have found early product-market-fit, have a steadily growing user base, have the resources to invest in data infrastructure, and are ready to build a growth function.

This guide doesn’t mention specific tools or offer tooling recommendations—I have assumed that you have access to the tools and resources needed to put this guide into action.

I’d like to start by describing the fictitious SaaS product I’ll be referencing here: Airtouch is a data integration tool to move data in and out of a data warehouse—the tool is easy for less-technical folks to use but also offers advanced features for more technical ones. Also, Airtouch has multiple use cases and is used by various industries due to which personalizing the user journey is key—a linear journey just won’t cut it.

The four broad areas covered in this guide and that growth professionals need to have a stake in are as follows:

  1. Collecting customer data for analysis and activation
  2. Analyzing product usage to identify points of friction
  3. Building personalized experiences
  4. Measuring impact and iterating

Before jumping in, it is helpful to keep in mind as a growth person that while you don’t necessarily own all of the above-mentioned areas of work, you must see yourself as a stakeholder—you need to have an understanding of the respective workflows and you must contribute to them wherever possible.

It’s time to put yourself in the shoes of the growth lead at Airtouch.

Collecting customer data for analysis and activation

From a growth perspective, you need customer data that will enable you to derive behavioral insights and take action based on those insights.

In the context of Airtouch, you want data that will help you answer questions like:

  • What percentage of users who sign up also create their first workflow within 24 hours? How many of those users create more than 1 workflow?
  • What percentage of users invite a colleague to join the workspace before creating the first workflow? How many invited users only create connections and how many also build the workflows?
  • What percentage of accounts ran the first workflow within the first 24 hours? What percentage of accounts took longer than 3 days? And how many never ran a workflow at all?

You might want answers to a whole host of other questions, but it’s important to be able to answer these basic ones before digging deeper. Irrespective of the SaaS product you’re trying to grow, you need to embrace an iterative process that looks something like this:

  1. I have a question.
  2. I need some data to answer that question.
  3. I have the answer and now I want to run some experiments to test my hypothesis.
  4. I need to measure the impact of my experiments.

Getting through the above for all your initial questions can take a while and getting this right itself can drive significant growth in terms of user adoption.

At the time of planning the data collection, it is very helpful to think about the destinations the data will be consumed. Sure, you want to analyze the data in a specific tool, but then you also need the same data to be available in the tools where you intend to take action on the derived insights.

This is a non-trivial process and I highly recommend documenting where all the data you intend to collect will be consumed and for what purpose—doing this sooner rather than later can go a long way in getting resources allocated for the respective workflows.

Moreover, knowing what you wish to do with data points enables you to collaborate better with data and engineering teams that are typically involved in collecting, storing, and moving data. As the growth lead at a company that offers a product to move data around, you should know this best.

Learn how to accurately collect, analyze, and activate your data with The Amplitude Guide to Behavioral Data & Event Tracking.

Behavioral Data Event Tracking

Analyzing product usage to identify points of friction

Now that you have the data to answer your preliminary questions or burning questions (as I like to refer to them), you should be able to analyze the data to identify various points of friction in the user journey.

Inverting your burning questions is a good way to figure out whether users are getting stuck at places you’d least expect or want them to. Let’s dig deeper into some questions that can help identify points of friction for Airtouch.

How many users signed up but didn’t verify their email?

Once you have this data and if the number is meaningful, it’s important to figure out why this is happening. Are people using fake emails to sign up? Are accounts being created by bots? Are people not receiving the verification email or is it landing in the spam folder for some reason?

Airtouch allows users to try the product for 48 hours even without verifying their email—it is helpful to see if users who haven’t verified their email have added a connection or performed another key action such as inviting a coworker.

Based on such analyses, the verification reminder emails can also be more personalized for different cohorts of users and can potentially be helpful in driving the next desired action. For instance, when users click the verification link, those who have already created a connection can be shown an in-app walkthrough of how to build a workflow or how to invite a coworker.

How many users started creating a workflow but didn’t complete it?

Creating a workflow has many steps and it’s possible for a user to start the process but for some reason, leave it incomplete and end the session. You want to track distinct events that tell you that a workflow creation was started and a workflow was actually saved—this will enable you to identify users who probably get stuck and don’t end up creating a workflow even though they had the intent to do so.

If there’s an onboarding survey asking users for their role, you can use that data point to break down the above analysis by user persona. If users who don’t belong to the core user persona end up leaving workflows incomplete, then there’s nothing to worry about—it’s okay to assume that those users are just playing around. However, since Airtouch caters to data engineers, you certainly don’t want a lot of users who identify as data engineers to start creating workflows and not complete them.

In other words, if your core user persona is getting stuck while performing a key action in your product, then you have a product or an onboarding problem that needs to be fixed sooner rather than later.

Building personalized experiences

For Airtouch, the number of active workflows is a key metric, and a high percentage of users not saving a workflow after starting one indicates a point of friction that can be addressed either by making native changes in the app’s interface or by triggering personalized in-app guides based on user intent.

A guide that shows how to move data out of the warehouse is no good for a user who is trying to ingest data in the warehouse from an external source, and vice versa. In-app guides are typically implemented using third-party tools and are a better bet than making changes to the app’s UI. Moreover, these guides can be hyper-personalized and can be triggered based on specific events performed by users belonging to specific segments.

Users from a sales or marketing function belong to a non-core persona for Airtouch and these users typically rely on their coworkers to set up a connection on Airtouch before they can build workflows. Keeping that in mind, if a sales rep signs up, guiding them through the process of inviting a coworker is more useful than showing them how to add a connection. Even the welcome email should be personalized and must include a call to action asking the user to invite a coworker to their account.

Similarly, when a data engineer signs up via an invitation from a colleague, it might be best not to show them an in-app guide at all as they already have the context and are likely to know their way around a data integration tool like Airtouch. Instead, you can point them to the docs and after 24 hours, send them an email inviting them to join the user community and upvote feature requests.

In terms of organic signups (not via an invitation), you definitely want to include the link to the docs in the welcome email for the data engineering persona. Additionally, you’d want to trigger another email that links to an in-app guide if the user doesn’t add a connection or create their first workflow within 24 hours of signing up.

Measuring impact and iterating

Using only a handful of data points, you have managed to answer some of your burning questions, identify various points of friction, and build personalized experiences to get new users to perform desired actions. Not sure if you noticed, but so far, everything you’ve done has been geared towards activating new accounts and there’s so much more to be done to get users to increase product usage and become paying customers.

However, getting users to get to the aha moment and derive the core value of the product is key, and if product-led growth is a priority, you must increase the activation rate before moving to conversion (which often involves salespeople).

Needless to say, measuring the impact of your personalization efforts and iterating based on the results is the only way to increase product adoption and the activation rate.

In order to measure the impact of your in-app and email campaigns, it’s not enough to look at view/open and click-through rates—you need to be able to measure if users perform desired actions after they view or open an in-app guide or email, respectively. To do so, you need to join behavioral data from your app with the data from third-party tools powering those campaigns and then perform analyses to figure out the impact of your campaigns on user behavior.

Depending on your data stack, this can be done either using a product analytics tool that integrates with third-party engagement tools or by performing analyses using SQL directly in your data warehouse after syncing data from your app and third-party tools to it.

While such measurement is usually seen as something reserved for teams with advanced use cases, I highly recommend prioritizing such analyses before collecting additional data points to answer more burning questions about product usage.

Rinse and repeat

With a strong foundation in place to collect accurate data, derive insights from the data, drive action on the data via engagement campaigns, and measure the impact of those campaigns, you should be in a good position to increase product adoption.

Resisting the temptation to collect all the data one can before aligning various teams around analysis and activation efforts is difficult but necessary if you want to truly become data-led and adopt a product-led growth strategy.

Learn more about product-led growth with these 5 PLG diagrams, or start mapping your product-led growth strategy with this free PLG worksheet.

Product-led Growth diagrams CTA ad
About the author
Arpit Choudhury

Arpit Choudhury

Founder, astorik

More from Arpit

Arpit is growing databeats (databeats.community), a B2B media company, whose mission is to beat the gap between data people and non-data people for good.

More from Arpit
Topics

Feature Adoption

Product-Led Growth

Platform
  • Product Analytics
  • Feature Experimentation
  • Feature Management
  • Web Analytics
  • Web Experimentation
  • Session Replay
  • Activation
  • Guides and Surveys
  • AI Agents
  • AI Visibility
  • AI Feedback
  • Amplitude MCP
Compare us
  • Adobe
  • Google Analytics
  • Mixpanel
  • Heap
  • Optimizely
  • Fullstory
  • Pendo
Resources
  • Resource Library
  • Blog
  • Product Updates
  • Amp Champs
  • Amplitude Academy
  • Events
  • Glossary
Partners & Support
  • Contact Us
  • Customer Help Center
  • Community
  • Developer Docs
  • Find a Partner
  • Become an affiliate
Company
  • About Us
  • Careers
  • Press & News
  • Investor Relations
  • Diversity, Equity & Inclusion
Terms of ServicePrivacy NoticeAcceptable Use PolicyLegal
EnglishJapanese (日本語)Korean (한국어)Español (Spain)Português (Brasil)Português (Portugal)FrançaisDeutsch
© 2025 Amplitude, Inc. All rights reserved. Amplitude is a registered trademark of Amplitude, Inc.

Recommended Reading

article card image
Read 
Product
Getting Started: Product Analytics Isn’t Just for Analysts

Dec 5, 2025

5 min read

article card image
Read 
Insights
Vibe Check Part 3: When Vibe Marketing Goes Off the Rails

Dec 4, 2025

8 min read

article card image
Read 
Customers
How CAFU Tripled Engagement and Boosted Conversions 20%+

Dec 4, 2025

8 min read

article card image
Read 
Customers
The Future is Data-Driven: Introducing the Winners of the Ampy Awards 2025

Dec 2, 2025

6 min read

Explore Related Content

Integration
Using Behavioral Analytics for Growth with the Amplitude App on HubSpot

Jun 17, 2024

10 min read

Personalization
Identity Resolution: The Secret to a 360-Degree Customer View

Feb 16, 2024

10 min read

Product
Inside Warehouse-native Amplitude: A Technical Deep Dive

Jun 27, 2023

15 min read

Guide
5 Proven Strategies to Boost Customer Engagement

Jul 12, 2023

Video
Designing High-Impact Experiments

May 13, 2024

Startup
9 Direct-to-consumer Marketing Tactics to Accelerate Ecommerce Growth

Feb 20, 2024

10 min read

Growth
Leveraging Analytics to Achieve Product-Market Fit

Jul 20, 2023

10 min read

Product
iFood Serves Up 54% More Checkouts with Error Message Makeover

Oct 7, 2024

9 min read

Blog
InsightsProductCompanyCustomers
Topics

101

AI

APJ

Acquisition

Adobe Analytics

Amplify

Amplitude Academy

Amplitude Activation

Amplitude Analytics

Amplitude Audiences

Amplitude Community

Amplitude Feature Experimentation

Amplitude Guides and Surveys

Amplitude Heatmaps

Amplitude Made Easy

Amplitude Session Replay

Amplitude Web Experimentation

Amplitude on Amplitude

Analytics

B2B SaaS

Behavioral Analytics

Benchmarks

Churn Analysis

Cohort Analysis

Collaboration

Consolidation

Conversion

Customer Experience

Customer Lifetime Value

DEI

Data

Data Governance

Data Management

Data Tables

Digital Experience Maturity

Digital Native

Digital Transformer

EMEA

Ecommerce

Employee Resource Group

Engagement

Event Tracking

Experimentation

Feature Adoption

Financial Services

Funnel Analysis

Getting Started

Google Analytics

Growth

Healthcare

How I Amplitude

Implementation

Integration

LATAM

Life at Amplitude

MCP

Machine Learning

Marketing Analytics

Media and Entertainment

Metrics

Modern Data Series

Monetization

Next Gen Builders

North Star Metric

Partnerships

Personalization

Pioneer Awards

Privacy

Product 50

Product Analytics

Product Design

Product Management

Product Releases

Product Strategy

Product-Led Growth

Recap

Retention

Startup

Tech Stack

The Ampys

Warehouse-native Amplitude