Platform

AI

AI Agents
Sense, decide, and act faster than ever before
AI Visibility
See how your brand shows up in AI search
AI Feedback
Distill what your customers say they want
Amplitude MCP
Insights from the comfort of your favorite AI tool

Insights

Product Analytics
Understand the full user journey
Marketing Analytics
Get the metrics you need with one line of code
Session Replay
Visualize sessions based on events in your product
Heatmaps
Visualize clicks, scrolls, and engagement

Action

Guides and Surveys
Guide your users and collect feedback
Feature Experimentation
Innovate with personalized product experiences
Web Experimentation
Drive conversion with A/B testing powered by data
Feature Management
Build fast, target easily, and learn as you ship
Activation
Unite data across teams

Data

Warehouse-native Amplitude
Unlock insights from your data warehouse
Data Governance
Complete data you can trust
Security & Privacy
Keep your data secure and compliant
Integrations
Connect Amplitude to hundreds of partners
Solutions
Solutions that drive business results
Deliver customer value and drive business outcomes
Amplitude Solutions →

Industry

Financial Services
Personalize the banking experience
B2B
Maximize product adoption
Media
Identify impactful content
Healthcare
Simplify the digital healthcare experience
Ecommerce
Optimize for transactions

Use Case

Acquisition
Get users hooked from day one
Retention
Understand your customers like no one else
Monetization
Turn behavior into business

Team

Product
Fuel faster growth
Data
Make trusted data accessible
Engineering
Ship faster, learn more
Marketing
Build customers for life
Executive
Power decisions, shape the future

Size

Startups
Free analytics tools for startups
Enterprise
Advanced analytics for scaling businesses
Resources

Learn

Blog
Thought leadership from industry experts
Resource Library
Expertise to guide your growth
Compare
See how we stack up against the competition
Glossary
Learn about analytics, product, and technical terms
Explore Hub
Detailed guides on product and web analytics

Connect

Community
Connect with peers in product analytics
Events
Register for live or virtual events
Customers
Discover why customers love Amplitude
Partners
Accelerate business value through our ecosystem

Support & Services

Customer Help Center
All support resources in one place: policies, customer portal, and request forms
Developer Hub
Integrate and instrument Amplitude
Academy & Training
Become an Amplitude pro
Professional Services
Drive business success with expert guidance and support
Product Updates
See what's new from Amplitude

Tools

Benchmarks
Understand how your product compares
Templates
Kickstart your analysis with custom dashboard templates
Tracking Guides
Learn how to track events and metrics with Amplitude
Maturity Model
Learn more about our digital experience maturity model
Pricing
LoginContact salesGet started

AI

AI AgentsAI VisibilityAI FeedbackAmplitude MCP

Insights

Product AnalyticsMarketing AnalyticsSession ReplayHeatmaps

Action

Guides and SurveysFeature ExperimentationWeb ExperimentationFeature ManagementActivation

Data

Warehouse-native AmplitudeData GovernanceSecurity & PrivacyIntegrations
Amplitude Solutions →

Industry

Financial ServicesB2BMediaHealthcareEcommerce

Use Case

AcquisitionRetentionMonetization

Team

ProductDataEngineeringMarketingExecutive

Size

StartupsEnterprise

Learn

BlogResource LibraryCompareGlossaryExplore Hub

Connect

CommunityEventsCustomersPartners

Support & Services

Customer Help CenterDeveloper HubAcademy & TrainingProfessional ServicesProduct Updates

Tools

BenchmarksTemplatesTracking GuidesMaturity Model
LoginSign Up

How to Use Predictive Customer Analytics to Convert Users

Know what your customers will do before they do it with predictive customer analytics. Use it to refine product pricing, inform marketing campaigns, decrease churn, and increase lifetime value.
Insights

Sep 26, 2022

10 min read

Jeremy Benza

Jeremy Benza

Former Principal Solutions Consultant, Amplitude

Predictive Customer Analytics

Predictive customer analytics uses machine learning to analyze historical data and build an algorithm. That algorithm is then applied to current data to predict what will happen next.

While these predictions can’t foretell the future with 100 percent accuracy, they can reveal trends and patterns that offer you data-backed clues about the best way to accomplish your goals, including conversions.

You can use predictive analytics to understand the behavior of customers and increase conversions. Read on to learn how.

Key takeaways

  • Predictive customer analytics isn’t 100 percent accurate, but it’s a fast, effective tool for crunching massive amounts of data to identify hidden trends and patterns in a customer’s actions. These customer insights help ensure your decision-making is driven by data, not guesswork.
  • You can make business decisions about marketing channels, pricing models, and upsell opportunities based on what your predictive analytics algorithm learns about your customers and their behavior.
  • Use predictive analytics to anticipate the signs of a customer who is about to churn and intervene with the right message delivered at the right time.
  • Customer predictive analytics is gaining traction among large and small companies across industries. You’ll need to adapt to this changing landscape to maintain a competitive advantage.

How accurate is predictive customer analytics?

Predictive customer analytics isn’t foolproof. The algorithms that produce customer analytics rely on a large amount of high-quality data to spit out reliable predictions.

Companies with more than 100,000 monthly active users are more likely to enjoy the full benefits of predictive customer analytics because they have a large enough volume of data to ensure accurate predictions. Companies must also plot out customer interactions for users to trigger throughout their customer journey. These triggers can be touchpoints like clicks, signups, video views, or reaching certain milestones. This is the behavioral data your predictive analytics algorithm will crunch.

A predictive analytics tool like Amplitude Audiences will measure the accuracy of the model and give you a Health Score based on things like data quality and quantity. Anything above 70% is considered a usable model.

It’s helpful to think of predictive customer analytics in terms of trends and playing the odds rather than precise figures and percentages. For example, say predictive analytics shows that 45 percent of your customers who haven’t played a song in your music-streaming app after two days will churn. However, that figure jumps to 65 percent after three days of inactivity.

Rather than worry about the precision of the percentages between days two and three, focus on the overarching trend. This insight tells you there’s an important milestone where it’s essential to re-engage customers to ensure you meet their needs. For example, you could send an in-app notification inviting them to listen to a new single released by their favorite artist.

The relationship between predictive analytics and customer behavior

Predictive customer analytics helps you understand user behavior and how customers will react to your attempts to nudge them to take specific actions. A predictive analytics tool helps you test different possibilities, so you can make a cost-effective decision with a higher probability of success.

With a predictive analytics algorithm like Amplitude’s Predictions, you can simply select the predictions tab, build a cohort or group of users, and choose the future action you want—or don’t want—that group to take. Once the model has finished running, you’ll be able to see which factors are the most important in predicting conversion. These factors include attributes—age, device type, company size—and behaviors—playing a song, sharing a playlist, using the favorite feature.

Knowing what features and in-product behaviors affect conversion helps you understand what to tweak to improve conversion rates.

Use cases for predictive customer analytics

You can use customer predictive analytics for:

  • Pricing: Predictive analytics helps you decide the right price for your product. You might experiment with a few different prices. If you discover some people are abandoning their shopping carts at a higher price, you could opt to send a follow-up email with a discount offer.
  • Cross-sell and upsell: Increasing customer lifetime value (CLV) through cross-selling and upselling is easier with predictive customer analytics. Based on historical data, the algorithm may alert you that gamers who buy gems in-game to level up also like to buy new items. You may use this opportunity to create a bundle for in-game power-ups when customers purchase a certain number of gems.
  • Marketing campaigns: With predictive customer analytics, you might see that people who arrive on a landing page from TikTok are more likely to download your app than those who click through from Facebook. You might take that information and decide to invest more of your social media budget on TikTok. Or, you could tweak the messaging on the Facebook ad to deliver more qualified and interested visitors.
  • Inverse pricing: Predictive customer analytics helps you target the right message to the right customer based on their likelihood to perform an action. Take subscriptions, for example. The algorithm can help determine whether users have a high, medium, or low likelihood of signing up for a monthly subscription. You can use that information to place users into three cohorts and tailor your follow-up accordingly. For example, a simple email reminder or in-app notification may be enough for those likeliest to sign up. For those with a low likelihood, you may consider giving them their first month free and gifting a ten percent discount on their second month.
Amplitude's blog image

Inverse pricing for a streaming service. Users with a low likelihood of upgrading after their free trial are offered a larger incentive than those with a high likelihood of upgrading.

Reducing customer churn with predictive analytics

It doesn’t matter how good your acquisition engine is; if you can’t retain existing customers, it’s hard to grow your business.

Predictive customer analytics helps businesses identify customers at high risk of churning. To identify customer attrition before it happens, look at the traits of customers who have churned in the past using churn rate cohort analysis. You can also look at a customer’s lifecycle for clues about who will likely churn. You might find indicators based on how long the person was a customer, how long it was since they last interacted with your product before churning, and what features they did—or didn’t—use before they said goodbye.

Then you can test different messaging and incentives to learn what’s most likely to retain those customers in the future.

Finally, you apply those lessons to current customers who show similar signs of churning. By intervening early, you have a better chance of regaining trust and customer loyalty.

Four companies using predictive analytics (the right way)

The predictive analytics market is expected to grow to $41.5 billion by 2028. Companies that don’t start using these forecasting tools now risk falling behind the competition. Here are a few use cases demonstrating how industry leaders use predictive customer analytics to grow their businesses.

  1. Jumbo has turned its business into a lucrative upselling and cross-selling machine with the help of Audiences. Amplitude’s algorithm learns from past purchasing behavior and identifies what products customers want to buy next. The more data they include for product predictions, the more sales they make when customers go to check out.
  2. Amazon uses its massive datasets to maximize the value of every purchase customers make. It changes the price of products as frequently as every ten minutes. Customers see different prices based on what competitors are selling their products for, the inventory available, how popular the item is, and past behavior from the customer and people with similar preferences.
  3. Stitch Fix uses predictive analytics to match styles to customers. They use a blend of explicit information provided by the customer, plus the behaviors of similar cohorts of customers and how they reacted to those styles.
  4. Chick-fil-A makes it easy to quickly select your favorite item because it presents different menu layouts. They base each layout on known customer preferences and the preferences of similar customers. Predictive analytics also helps Chick-fil-A make UX decisions in their app, like moving the delivery button to the first ordering screen. That move led to a 23 percent increase in delivery orders.

Put predictive customer analytics into practice

A 2019 Harvard Business Review survey showed that 77% of executives thought implementing big data was a chore. But it’s not the technology they were wary of—93% thought adapting their people and processes would be the real obstacle.

While the math underlying predictive customer analytics may be complex, the process for creating a prediction doesn’t have to be. Digital analytics tools like Amplitude are self-service and put data science in the hands of product managers and marketers who need it for daily decision-making—without involving your data science team. Turn more people at your company into data analysts who can create predictions about customer behavior—quickly and on their own—and take data-driven action.

Request a demo of Amplitude Audiences today and learn how easy it can be to make predictions that inform your pricing, product personalizations, marketing campaigns, and more.

References

  • Global Predictive Analytics Market 2028, Statista
  • How Amazon Used Big Data to Rule E-Commerce, Inside Big Data, 2019
  • Algorithms Tour, Stitch Fix
  • Companies are failing in their efforts to become data-driven, Harvard Business Review, 2019
Contact sales
About the author
Jeremy Benza

Jeremy Benza

Former Principal Solutions Consultant, Amplitude

More from Jeremy

Jeremy Benza is a former Principal Solution Consultant at Amplitude, where he helps teams uncover behavioral drivers of engagement, conversion, and retention in order to build better products. Jeremy has worked in the Analytics space for more than 10 years and he’s an alumnus of Salesforce, Qlik, and JPMC.

More from Jeremy
Topics
Platform
  • Product Analytics
  • Feature Experimentation
  • Feature Management
  • Web Analytics
  • Web Experimentation
  • Session Replay
  • Activation
  • Guides and Surveys
  • AI Agents
  • AI Visibility
  • AI Feedback
  • Amplitude MCP
Compare us
  • Adobe
  • Google Analytics
  • Mixpanel
  • Heap
  • Optimizely
  • Fullstory
  • Pendo
Resources
  • Resource Library
  • Blog
  • Product Updates
  • Amp Champs
  • Amplitude Academy
  • Events
  • Glossary
Partners & Support
  • Contact Us
  • Customer Help Center
  • Community
  • Developer Docs
  • Find a Partner
  • Become an affiliate
Company
  • About Us
  • Careers
  • Press & News
  • Investor Relations
  • Diversity, Equity & Inclusion
Terms of ServicePrivacy NoticeAcceptable Use PolicyLegal
EnglishJapanese (日本語)Korean (한국어)Español (Spain)Português (Brasil)Português (Portugal)FrançaisDeutsch
© 2025 Amplitude, Inc. All rights reserved. Amplitude is a registered trademark of Amplitude, Inc.
Blog
InsightsProductCompanyCustomers
Topics

101

AI

APJ

Acquisition

Adobe Analytics

Amplify

Amplitude Academy

Amplitude Activation

Amplitude Analytics

Amplitude Audiences

Amplitude Community

Amplitude Feature Experimentation

Amplitude Guides and Surveys

Amplitude Heatmaps

Amplitude Made Easy

Amplitude Session Replay

Amplitude Web Experimentation

Amplitude on Amplitude

Analytics

B2B SaaS

Behavioral Analytics

Benchmarks

Churn Analysis

Cohort Analysis

Collaboration

Consolidation

Conversion

Customer Experience

Customer Lifetime Value

DEI

Data

Data Governance

Data Management

Data Tables

Digital Experience Maturity

Digital Native

Digital Transformer

EMEA

Ecommerce

Employee Resource Group

Engagement

Event Tracking

Experimentation

Feature Adoption

Financial Services

Funnel Analysis

Getting Started

Google Analytics

Growth

Healthcare

How I Amplitude

Implementation

Integration

LATAM

Life at Amplitude

MCP

Machine Learning

Marketing Analytics

Media and Entertainment

Metrics

Modern Data Series

Monetization

Next Gen Builders

North Star Metric

Partnerships

Personalization

Pioneer Awards

Privacy

Product 50

Product Analytics

Product Design

Product Management

Product Releases

Product Strategy

Product-Led Growth

Recap

Retention

Startup

Tech Stack

The Ampys

Warehouse-native Amplitude

Recommended Reading

article card image
Read 
Product
Getting Started: Product Analytics Isn’t Just for Analysts

Dec 5, 2025

5 min read

article card image
Read 
Insights
Vibe Check Part 3: When Vibe Marketing Goes Off the Rails

Dec 4, 2025

8 min read

article card image
Read 
Customers
How CAFU Tripled Engagement and Boosted Conversions 20%+

Dec 4, 2025

8 min read

article card image
Read 
Customers
The Future is Data-Driven: Introducing the Winners of the Ampy Awards 2025

Dec 2, 2025

6 min read

Explore Related Content

Integration
Using Behavioral Analytics for Growth with the Amplitude App on HubSpot

Jun 17, 2024

10 min read

Personalization
Identity Resolution: The Secret to a 360-Degree Customer View

Feb 16, 2024

10 min read

Product
Inside Warehouse-native Amplitude: A Technical Deep Dive

Jun 27, 2023

15 min read

Guide
5 Proven Strategies to Boost Customer Engagement

Jul 12, 2023

Video
Designing High-Impact Experiments

May 13, 2024

Startup
9 Direct-to-consumer Marketing Tactics to Accelerate Ecommerce Growth

Feb 20, 2024

10 min read

Growth
Leveraging Analytics to Achieve Product-Market Fit

Jul 20, 2023

10 min read

Product
iFood Serves Up 54% More Checkouts with Error Message Makeover

Oct 7, 2024

9 min read