Platform

AI

AI Agents
Sense, decide, and act faster than ever before
AI Visibility
See how your brand shows up in AI search
AI Feedback
Distill what your customers say they want
Amplitude MCP
Insights from the comfort of your favorite AI tool

Insights

Product Analytics
Understand the full user journey
Marketing Analytics
Get the metrics you need with one line of code
Session Replay
Visualize sessions based on events in your product
Heatmaps
Visualize clicks, scrolls, and engagement

Action

Guides and Surveys
Guide your users and collect feedback
Feature Experimentation
Innovate with personalized product experiences
Web Experimentation
Drive conversion with A/B testing powered by data
Feature Management
Build fast, target easily, and learn as you ship
Activation
Unite data across teams

Data

Warehouse-native Amplitude
Unlock insights from your data warehouse
Data Governance
Complete data you can trust
Security & Privacy
Keep your data secure and compliant
Integrations
Connect Amplitude to hundreds of partners
Solutions
Solutions that drive business results
Deliver customer value and drive business outcomes
Amplitude Solutions →

Industry

Financial Services
Personalize the banking experience
B2B
Maximize product adoption
Media
Identify impactful content
Healthcare
Simplify the digital healthcare experience
Ecommerce
Optimize for transactions

Use Case

Acquisition
Get users hooked from day one
Retention
Understand your customers like no one else
Monetization
Turn behavior into business

Team

Product
Fuel faster growth
Data
Make trusted data accessible
Engineering
Ship faster, learn more
Marketing
Build customers for life
Executive
Power decisions, shape the future

Size

Startups
Free analytics tools for startups
Enterprise
Advanced analytics for scaling businesses
Resources

Learn

Blog
Thought leadership from industry experts
Resource Library
Expertise to guide your growth
Compare
See how we stack up against the competition
Glossary
Learn about analytics, product, and technical terms
Explore Hub
Detailed guides on product and web analytics

Connect

Community
Connect with peers in product analytics
Events
Register for live or virtual events
Customers
Discover why customers love Amplitude
Partners
Accelerate business value through our ecosystem

Support & Services

Customer Help Center
All support resources in one place: policies, customer portal, and request forms
Developer Hub
Integrate and instrument Amplitude
Academy & Training
Become an Amplitude pro
Professional Services
Drive business success with expert guidance and support
Product Updates
See what's new from Amplitude

Tools

Benchmarks
Understand how your product compares
Templates
Kickstart your analysis with custom dashboard templates
Tracking Guides
Learn how to track events and metrics with Amplitude
Maturity Model
Learn more about our digital experience maturity model
Pricing
LoginContact salesGet started

AI

AI AgentsAI VisibilityAI FeedbackAmplitude MCP

Insights

Product AnalyticsMarketing AnalyticsSession ReplayHeatmaps

Action

Guides and SurveysFeature ExperimentationWeb ExperimentationFeature ManagementActivation

Data

Warehouse-native AmplitudeData GovernanceSecurity & PrivacyIntegrations
Amplitude Solutions →

Industry

Financial ServicesB2BMediaHealthcareEcommerce

Use Case

AcquisitionRetentionMonetization

Team

ProductDataEngineeringMarketingExecutive

Size

StartupsEnterprise

Learn

BlogResource LibraryCompareGlossaryExplore Hub

Connect

CommunityEventsCustomersPartners

Support & Services

Customer Help CenterDeveloper HubAcademy & TrainingProfessional ServicesProduct Updates

Tools

BenchmarksTemplatesTracking GuidesMaturity Model
LoginSign Up

What Most Companies Get Wrong About Self-Service Analytics

Your analytics set-up might allow you to run queries on your own. But if it’s too rigid, limited by data quality, or fails to scale data literacy, it’s not exactly self-service.
Insights

Aug 15, 2021

6 min read

John Cutler

John Cutler

Former Product Evangelist, Amplitude

Self Service Analytics

Gartner defines self-service analytics as follows:

Self-Service Analytics is a form of business intelligence (BI) in which line-of-business professionals are enabled and encouraged to perform queries and generate reports on their own, with nominal IT support. Self-service analytics is often characterized by simple-to-use BI tools with basic analytic capabilities and an underlying data model that has been simplified or scaled down for ease of understanding and straightforward data access.

With all due respect to our friends at Gartner, we think this misses the point. It is time to redefine self-service analytics. Why? Because products are built by empowered, cross-functional teams. The IT vs Business dichotomy is far less relevant in the world of product. When we frame the goal of self-service analytics as convenient, individual access to reports, insights, and data, we lose sight of the big picture. Especially if we limit that definition to “basic analytic capabilities.”

Self-service is not the goal. Impact is the goal.

Let’s explore some of the issues here with three examples of how self-service analytics might not live up to its expectations:

  1. Example #1: An analytics team partners with a data engineering team to create a dashboard for a decision maker. The dashboard is “self-service,” and answers the exact questions finalized during the discovery process. It’s perfect. Until it isn’t. What about new questions? What about exploring the data?
  2. Example #2: A team decides to use an “inch deep, mile wide” approach. They track everything, but at a very low fidelity (e.g. they don’t use event properties or enforce a taxonomy). In theory, now everyone has access to the data using a self-service tool. Just log in! But at what cost to decision quality?
  3. Example #3: A team of 40 product managers are given access to a self-service tool. They go to town. Dashboards pop up everywhere. The tool is powerful and customizable, but the team currently isn’t very data literate. Yes, this is self-service, but it isn’t leading to greater impact.

Example #1 is too rigid. Example #2 is limited by data quality. Example #3 fails to scale data literacy. In the fast-paced and unpredictable world of product and growth, we release new experiments and updates continuously. Our chosen approach needs to keep up without becoming cluttered and unusable. In short, you need sustained adaptability, solid data, and data literacy.

“Analytics, unlike reporting, is meant to be interactive, which requires flexibility and high quality data,” notes product management consultant Saeed Khan. “That flexibility is sorely lacking in many internally built and externally purchased solutions. You’re forced to converge on questions, instead of leaving the door open to new areas of curiosity. Or be flexible and surface-level. This just doesn’t work for product teams.”

But the problems go a little deeper. Building product is a team endeavor. What does self-service look like for a whole team instead of a lone business user? The team needs the freedom to instrument and track new events without worrying about burdening another team. They also need the freedom to access the insights, do exploratory analysis, manage data, collaborate on insights, plan experiments, and take action.

Even this individual team view is a little restrictive. Consider that most organizations do have a “data team,” albeit a data team that is overworked and spread thin. The dominant model is transactional—teams submit questions and requests, the data team does its best to answer/deflect. As a response to being overworked, they create “self-service” options to get some breathing room. But this is also a poor sacrifice.

“Self-service as a curiosity-spark, question finder, and idea-generator is a very real, valuable thing,” explains Grant Winship, Analytics Engineer at dbt Labs. “But I think it must be paired with a product mindset on the data team. PMs and business users must be ready for their questions and analytics forays to be synthesized, interrogated, and selectively developed.” Collaboration and education matters.

For Elena Dyachkova, Senior Product Analytics Manager at Peloton, the education component is the true “elephant in the room.” A former sports journalist, she likens scaling data literacy to educating athletes on the general principles of strength training and “finding unique adaptations for each athlete’s anatomy.” The appropriate use of data, frameworks for setting KPIs, and the business context behind certain metrics, are “not really in scope for a single SaaS tool but are the foundation for all other data literacy pieces working.” While we see analysts using Amplitude to help in these education efforts, it still boils down to a concerted, focused effort.

To us at Amplitude, this more team-focused, collaborative, and impact-focused approach is self-service. Not just access to a dashboard. The idea of accomplishing things “without the help of engineers or data people” is pervasive, but can reinforce silos and impact outcomes. Self-service should enable collaboration, not hinder it.

At Amplitude we try to take a more holistic view of self-service analytics. Our product philosophy is to:

  1. Encourage curiosity. First-pass questions are rarely the best questions. Exploration inspires new questions. We help unlock the long tail of insights, where the true gems exist.
  2. Self-service is about agency, removing dependencies, and impact. It is not about pushing the burden around so that some team members can enjoy easy access, while other team members do the grunt work.
  3. Scale data literacy. Can an analyst and product manager pair and learn together? Can someone start an analysis, make a notebook, and then share that with someone more skilled to get feedback?
  4. A bias to action and impact. By supporting testing, recommendations, personalization, and feature flagging, we get teams close to the action. At the end of the day, the goal is to build a system that creates value for customers, business, etc. It isn’t to run reports.

We believe that self-service fits into a virtuous cycle. Access and usable data inspires curiosity, and curiosity coupled with collaboration and data literacy yields better decisions, actions, and impact.


Product Analytics for Dummies
About the author
John Cutler

John Cutler

Former Product Evangelist, Amplitude

More from John

John Cutler is a former product evangelist and coach at Amplitude.

More from John
Topics

Analytics

Product Analytics

Platform
  • Product Analytics
  • Feature Experimentation
  • Feature Management
  • Web Analytics
  • Web Experimentation
  • Session Replay
  • Activation
  • Guides and Surveys
  • AI Agents
  • AI Visibility
  • AI Feedback
  • Amplitude MCP
Compare us
  • Adobe
  • Google Analytics
  • Mixpanel
  • Heap
  • Optimizely
  • Fullstory
  • Pendo
Resources
  • Resource Library
  • Blog
  • Product Updates
  • Amp Champs
  • Amplitude Academy
  • Events
  • Glossary
Partners & Support
  • Contact Us
  • Customer Help Center
  • Community
  • Developer Docs
  • Find a Partner
  • Become an affiliate
Company
  • About Us
  • Careers
  • Press & News
  • Investor Relations
  • Diversity, Equity & Inclusion
Terms of ServicePrivacy NoticeAcceptable Use PolicyLegal
EnglishJapanese (日本語)Korean (한국어)Español (Spain)Português (Brasil)Português (Portugal)FrançaisDeutsch
© 2025 Amplitude, Inc. All rights reserved. Amplitude is a registered trademark of Amplitude, Inc.
Blog
InsightsProductCompanyCustomers
Topics

101

AI

APJ

Acquisition

Adobe Analytics

Amplify

Amplitude Academy

Amplitude Activation

Amplitude Analytics

Amplitude Audiences

Amplitude Community

Amplitude Feature Experimentation

Amplitude Guides and Surveys

Amplitude Heatmaps

Amplitude Made Easy

Amplitude Session Replay

Amplitude Web Experimentation

Amplitude on Amplitude

Analytics

B2B SaaS

Behavioral Analytics

Benchmarks

Churn Analysis

Cohort Analysis

Collaboration

Consolidation

Conversion

Customer Experience

Customer Lifetime Value

DEI

Data

Data Governance

Data Management

Data Tables

Digital Experience Maturity

Digital Native

Digital Transformer

EMEA

Ecommerce

Employee Resource Group

Engagement

Event Tracking

Experimentation

Feature Adoption

Financial Services

Funnel Analysis

Getting Started

Google Analytics

Growth

Healthcare

How I Amplitude

Implementation

Integration

LATAM

Life at Amplitude

MCP

Machine Learning

Marketing Analytics

Media and Entertainment

Metrics

Modern Data Series

Monetization

Next Gen Builders

North Star Metric

Partnerships

Personalization

Pioneer Awards

Privacy

Product 50

Product Analytics

Product Design

Product Management

Product Releases

Product Strategy

Product-Led Growth

Recap

Retention

Startup

Tech Stack

The Ampys

Warehouse-native Amplitude

Recommended Reading

article card image
Read 
Product
Getting Started: Product Analytics Isn’t Just for Analysts

Dec 5, 2025

5 min read

article card image
Read 
Insights
Vibe Check Part 3: When Vibe Marketing Goes Off the Rails

Dec 4, 2025

8 min read

article card image
Read 
Customers
How CAFU Tripled Engagement and Boosted Conversions 20%+

Dec 4, 2025

8 min read

article card image
Read 
Customers
The Future is Data-Driven: Introducing the Winners of the Ampy Awards 2025

Dec 2, 2025

6 min read

Explore Related Content

Integration
Using Behavioral Analytics for Growth with the Amplitude App on HubSpot

Jun 17, 2024

10 min read

Personalization
Identity Resolution: The Secret to a 360-Degree Customer View

Feb 16, 2024

10 min read

Product
Inside Warehouse-native Amplitude: A Technical Deep Dive

Jun 27, 2023

15 min read

Guide
5 Proven Strategies to Boost Customer Engagement

Jul 12, 2023

Video
Designing High-Impact Experiments

May 13, 2024

Startup
9 Direct-to-consumer Marketing Tactics to Accelerate Ecommerce Growth

Feb 20, 2024

10 min read

Growth
Leveraging Analytics to Achieve Product-Market Fit

Jul 20, 2023

10 min read

Product
iFood Serves Up 54% More Checkouts with Error Message Makeover

Oct 7, 2024

9 min read