Platform

AI

AI Agents
Sense, decide, and act faster than ever before
AI Visibility
See how your brand shows up in AI search
AI Feedback
Distill what your customers say they want
Amplitude MCP
Insights from the comfort of your favorite AI tool

Insights

Product Analytics
Understand the full user journey
Marketing Analytics
Get the metrics you need with one line of code
Session Replay
Visualize sessions based on events in your product
Heatmaps
Visualize clicks, scrolls, and engagement

Action

Guides and Surveys
Guide your users and collect feedback
Feature Experimentation
Innovate with personalized product experiences
Web Experimentation
Drive conversion with A/B testing powered by data
Feature Management
Build fast, target easily, and learn as you ship
Activation
Unite data across teams

Data

Warehouse-native Amplitude
Unlock insights from your data warehouse
Data Governance
Complete data you can trust
Security & Privacy
Keep your data secure and compliant
Integrations
Connect Amplitude to hundreds of partners
Solutions
Solutions that drive business results
Deliver customer value and drive business outcomes
Amplitude Solutions →

Industry

Financial Services
Personalize the banking experience
B2B
Maximize product adoption
Media
Identify impactful content
Healthcare
Simplify the digital healthcare experience
Ecommerce
Optimize for transactions

Use Case

Acquisition
Get users hooked from day one
Retention
Understand your customers like no one else
Monetization
Turn behavior into business

Team

Product
Fuel faster growth
Data
Make trusted data accessible
Engineering
Ship faster, learn more
Marketing
Build customers for life
Executive
Power decisions, shape the future

Size

Startups
Free analytics tools for startups
Enterprise
Advanced analytics for scaling businesses
Resources

Learn

Blog
Thought leadership from industry experts
Resource Library
Expertise to guide your growth
Compare
See how we stack up against the competition
Glossary
Learn about analytics, product, and technical terms
Explore Hub
Detailed guides on product and web analytics

Connect

Community
Connect with peers in product analytics
Events
Register for live or virtual events
Customers
Discover why customers love Amplitude
Partners
Accelerate business value through our ecosystem

Support & Services

Customer Help Center
All support resources in one place: policies, customer portal, and request forms
Developer Hub
Integrate and instrument Amplitude
Academy & Training
Become an Amplitude pro
Professional Services
Drive business success with expert guidance and support
Product Updates
See what's new from Amplitude

Tools

Benchmarks
Understand how your product compares
Templates
Kickstart your analysis with custom dashboard templates
Tracking Guides
Learn how to track events and metrics with Amplitude
Maturity Model
Learn more about our digital experience maturity model
Pricing
LoginContact salesGet started

AI

AI AgentsAI VisibilityAI FeedbackAmplitude MCP

Insights

Product AnalyticsMarketing AnalyticsSession ReplayHeatmaps

Action

Guides and SurveysFeature ExperimentationWeb ExperimentationFeature ManagementActivation

Data

Warehouse-native AmplitudeData GovernanceSecurity & PrivacyIntegrations
Amplitude Solutions →

Industry

Financial ServicesB2BMediaHealthcareEcommerce

Use Case

AcquisitionRetentionMonetization

Team

ProductDataEngineeringMarketingExecutive

Size

StartupsEnterprise

Learn

BlogResource LibraryCompareGlossaryExplore Hub

Connect

CommunityEventsCustomersPartners

Support & Services

Customer Help CenterDeveloper HubAcademy & TrainingProfessional ServicesProduct Updates

Tools

BenchmarksTemplatesTracking GuidesMaturity Model
LoginSign Up

A Guide to Implementing a Successful Data Governance Framework

Clean, high-quality data doesn’t happen by accident. You need a system that builds a culture of data integrity.
Insights

Feb 21, 2021

11 min read

Ganit Bar-Dor

Ganit Bar-Dor

Sr. Director, Global Professional Services, Amplitude

Data Governance Framework

This blog post was co-authored by Jessica Chiu, Professional Services Manager, Amplitude, and updated on November, 16, 2022.


Clean, high-quality data doesn’t happen by accident. You need a system that builds a culture of data integrity.

When any company begins their data journey, they often have a small number of data sources and people managing their data assets, so it’s easy to keep their data taxonomy clean.

But as those companies scale their programs and begin to draw key insights, the complexity of their data and the number of inputs involved also increases. If they struggle to manage this information, they may face several costs.

“Reliable and relevant analytics are important from the get-go, and they are not achievable without some data governance,” says Avo CEO and Co-founder Stefanía Ólafsdóttir. “Scaling product and go-to-market efforts make data reliability and product delivery speed more important, while a growing team makes data reliability more difficult to manage. In other words, the more you need data governance, the more difficult it becomes.”

According to Gartner research, “organizations believe poor data quality to be responsible for an average of $15 million per year in losses.” And with growing regulations around data privacy, such as the GDPR and the CCPA, companies have to be careful about what data they track and be able to access and remove specific data as required.

Instituting a data governance framework increases the integrity of your data because everyone is working from the same taxonomy and standards. With this framework, you minimize data misunderstandings by creating clear and effective data practices.

What is a data governance framework?

A data governance framework is a system that your team can use to establish overall data standards and processes. That includes resources and trainings that capture the planning, education, and maintenance standards of your data. An effective process does not need to be heavy-handed but rather intentional and structured.

Our best-in-class customers have taught us that there are three key pillars to these programs:

  • Education: Defining and executing the process of documenting, educating, and sharing your data standards with your team.
  • Instrumentation: What your data standards are and how to use them to instrument your data.
  • Maintenance: Who is in charge of ongoing data usage questions, management, and updating standards.

Following these pillars is key for organizations that want to use product analytics. Tracking user behavioral data isn’t meaningful unless you’re assessing high-quality data.

Why you need a data governance framework

It is easy for data to depreciate in value if there is no framework to dictate how you should add, manage, and maintain data.

Consider the following scenario: Company A does not have a data governance framework. Product team X labels their events with underscores between words, Product team Y uses hyphens for their labels and Product team Z doesn’t follow any conventions at all—with some events even labeled “test.” Someone then creates an executive dashboard to report on key company metrics and cross-product KPIs, but the report only pulls events with hyphens, which means the data is incomplete.

Incomplete data can, at best, lead to embarrassing data misinterpretations. For example, a graph on a report shows that the majority of customer acquisition happens through email, but the marketing team can easily show that’s the case for only a subset of products.

At worst, incomplete or misleading data can drive decisions that hurt your bottom line, such as shuttering valuable features or inadvertently failing to comply with government regulations.

3 pillars of a data governance framework

Build a culture around keeping data assets organized by establishing a plan for educating your team, instrumenting a taxonomy, and identifying roles for maintenance.

Pillar 1: Education

Create an education plan to outline how your teams learn about your data governance standards and how they can access those standards.

Your education plan should address the following:

  • How to gain access to your data tools
  • Quick start guides for data literacy, taxonomy design, and instrumentation
  • How a member of your team can read the data, for instance:
    • What are key events as well as official charts and dashboards
    • What are some generalized events that are common across the organization
  • How the data is governed, including how it’s managed and maintained
    • What is the team’s ongoing maintenance plan as well as escalation process when changes are needed
  • What is the instrumentation workflow, including templates or examples of how this process is managed

At Amplitude, we recommend including information about your data governance during new-hire onboarding. Highlighting the process for planning, instrumenting, and reading an initial set of events shows team members that data integrity is a priority from the beginning.

Because data evolves as your systems and processes change, it’s good to maintain a data taxonomy within a single source of truth. This resource helps your team understand and read the data easily. Include a data dictionary in your education plan and a guide for adding to the dictionary.

Amplitude's blog image

Sample event taxonomy for an ecommerce product

House your education plan and data dictionary in a shared location within Amplitude or an internal document repository so both trainers and trainees have access. Or use a tracking plan tool such as Amplitude’s Data Governance to host all your data governance documentation and create a single source of truth for all data stakeholders.

Pillar 2: Instrumentation

A comprehensive instrumentation workflow and taxonomy style guide sets the foundation for clean, easy-to-understand data assets.

When building your taxonomy guide, be sure to address the following:

  • What is the taxonomy for your data, such as the syntax and nomenclature
  • What are some generalized event standards and properties that should commonly be used
  • Who designs and approves the taxonomy
  • How the data is constructed and applied

Remember to collaborate with your engineering and design teams to identify the product metrics that answer questions such as, “What does success look like?” and “What does failure look like?” These metrics should be spelled out in your taxonomy guide using the templated syntax to address additional data needs.

The next step in the instrumentation pillar is to identify who will design the taxonomy—a data team, a lead product manager, an engineer, a designer, or someone else. At Amplitude, we’ve found the centralized data governors or product managers are most likely to design the taxonomy because they are the person most likely to be familiar with your data.

With your key metrics established and the person designing the taxonomy identified, it’s time to build your taxonomy style guide. The primary goal of any taxonomy is that it is functional. Make sure the nomenclature is consistent, human-readable, and descriptive. Considering how your team refers to different features and customer behaviors is helpful.

Include elements such as:

  • Casing (all lowercase, for example)
  • Syntax (verb plus noun, with spaces)
  • Verb tense (present versus past tense)

These elements should be consistent across events and properties. For more details on the different elements, check out our help documents.

Amplitude's blog image

Example event taxonomy style guide

All taxonomies should evolve and grow as your company’s goals, focus, and products will change. You should regularly revisit your taxonomy as your company and key metrics adapt to your new phase of business.

Once you have a taxonomy guide drafted, share it with the engineering team, and expect to make some compromises based on technical constraints. When your taxonomy is ready, make the documentation or tracking plan available in Amplitude Data, a shared Google Doc, Confluence, or GitHub repo so anyone can access it during development.

Learn more about designing your data taxonomy in our Fundamentals of Data Taxonomy Design course. Then, get started with instrumenting your data using our Guide to Behavioral Data & Event Tracking.

Pillar 3: Maintenance

The final piece of the data governance framework is to clearly outline who to contact for questions and updates to the framework, as well as how the documents in the framework will be distributed.

When documenting the maintenance pillar of your framework, be sure to address the following:

  • Who the data governors are
  • How your team reports data issues
  • How your team resolves data issues
  • How often your team will review the existing taxonomy and address any changes that are needed

Your data governors are the people most able to address questions related to specific aspects of your data governance framework, such as general data issues or suggested updates to the taxonomy design.

This can be a single point of contact (e.g., a product manager who helped craft the original foundational taxonomy) or a data governance team consisting of cross-functional members.

In terms of reporting data issues, determine whether team members should contact the appropriate data governor directly or whether there is a specific channel team members should use.

The final piece of the data governance framework is to outline how the pieces of the framework will be distributed.

Are they all located in the same location in Amplitude, Google Drive, or Confluence? Will different teams include them in their own documentation repositories? Or is everything in a data governance tool? Understanding where this information will live will make it easier to update them when there are changes.

High-quality data requires a solid framework

There is no magic wand for clean, useful data, but establishing a clear data governance framework will help. With these guidelines, your team will have the information they need to maintain high-quality, standardized data assets.

Looking for help with your data governance practices? Reach out to a product analytics expert to see how Amplitude helps customers streamline their taxonomies during the onboarding process.

Resources

  • Data Taxonomy Playbook
  • Fundamentals of Data Taxonomy Design Course
  • The Amplitude Guide to Behavioral Data & Event Tracking
Behavioral Data Event Tracking
About the author
Ganit Bar-Dor

Ganit Bar-Dor

Sr. Director, Global Professional Services, Amplitude

More from Ganit

Ganit Bar-Dor manages Technical Services & Success at Amplitude, working with companies to gain actionable insights and effectively manage their data. She has worn many hats within professional services and product teams, building, executing and consulting with customers. Ganit Bar-Dor graduated from Concordia University in Montreal, Canada, with a degree in Computer Science.

More from Ganit
Topics

Data

Data Management

Platform
  • Product Analytics
  • Feature Experimentation
  • Feature Management
  • Web Analytics
  • Web Experimentation
  • Session Replay
  • Activation
  • Guides and Surveys
  • AI Agents
  • AI Visibility
  • AI Feedback
  • Amplitude MCP
Compare us
  • Adobe
  • Google Analytics
  • Mixpanel
  • Heap
  • Optimizely
  • Fullstory
  • Pendo
Resources
  • Resource Library
  • Blog
  • Product Updates
  • Amp Champs
  • Amplitude Academy
  • Events
  • Glossary
Partners & Support
  • Contact Us
  • Customer Help Center
  • Community
  • Developer Docs
  • Find a Partner
  • Become an affiliate
Company
  • About Us
  • Careers
  • Press & News
  • Investor Relations
  • Diversity, Equity & Inclusion
Terms of ServicePrivacy NoticeAcceptable Use PolicyLegal
EnglishJapanese (日本語)Korean (한국어)Español (Spain)Português (Brasil)Português (Portugal)FrançaisDeutsch
© 2025 Amplitude, Inc. All rights reserved. Amplitude is a registered trademark of Amplitude, Inc.

Recommended Reading

article card image
Read 
Product
Getting Started: Product Analytics Isn’t Just for Analysts

Dec 5, 2025

5 min read

article card image
Read 
Insights
Vibe Check Part 3: When Vibe Marketing Goes Off the Rails

Dec 4, 2025

8 min read

article card image
Read 
Customers
How CAFU Tripled Engagement and Boosted Conversions 20%+

Dec 4, 2025

8 min read

article card image
Read 
Customers
The Future is Data-Driven: Introducing the Winners of the Ampy Awards 2025

Dec 2, 2025

6 min read

Explore Related Content

Integration
Using Behavioral Analytics for Growth with the Amplitude App on HubSpot

Jun 17, 2024

10 min read

Personalization
Identity Resolution: The Secret to a 360-Degree Customer View

Feb 16, 2024

10 min read

Product
Inside Warehouse-native Amplitude: A Technical Deep Dive

Jun 27, 2023

15 min read

Guide
5 Proven Strategies to Boost Customer Engagement

Jul 12, 2023

Video
Designing High-Impact Experiments

May 13, 2024

Startup
9 Direct-to-consumer Marketing Tactics to Accelerate Ecommerce Growth

Feb 20, 2024

10 min read

Growth
Leveraging Analytics to Achieve Product-Market Fit

Jul 20, 2023

10 min read

Product
iFood Serves Up 54% More Checkouts with Error Message Makeover

Oct 7, 2024

9 min read

Blog
InsightsProductCompanyCustomers
Topics

101

AI

APJ

Acquisition

Adobe Analytics

Amplify

Amplitude Academy

Amplitude Activation

Amplitude Analytics

Amplitude Audiences

Amplitude Community

Amplitude Feature Experimentation

Amplitude Guides and Surveys

Amplitude Heatmaps

Amplitude Made Easy

Amplitude Session Replay

Amplitude Web Experimentation

Amplitude on Amplitude

Analytics

B2B SaaS

Behavioral Analytics

Benchmarks

Churn Analysis

Cohort Analysis

Collaboration

Consolidation

Conversion

Customer Experience

Customer Lifetime Value

DEI

Data

Data Governance

Data Management

Data Tables

Digital Experience Maturity

Digital Native

Digital Transformer

EMEA

Ecommerce

Employee Resource Group

Engagement

Event Tracking

Experimentation

Feature Adoption

Financial Services

Funnel Analysis

Getting Started

Google Analytics

Growth

Healthcare

How I Amplitude

Implementation

Integration

LATAM

Life at Amplitude

MCP

Machine Learning

Marketing Analytics

Media and Entertainment

Metrics

Modern Data Series

Monetization

Next Gen Builders

North Star Metric

Partnerships

Personalization

Pioneer Awards

Privacy

Product 50

Product Analytics

Product Design

Product Management

Product Releases

Product Strategy

Product-Led Growth

Recap

Retention

Startup

Tech Stack

The Ampys

Warehouse-native Amplitude