Platform

AI

AI Agents
Sense, decide, and act faster than ever before
AI Visibility
See how your brand shows up in AI search
AI Feedback
Distill what your customers say they want
Amplitude MCP
Insights from the comfort of your favorite AI tool

Insights

Product Analytics
Understand the full user journey
Marketing Analytics
Get the metrics you need with one line of code
Session Replay
Visualize sessions based on events in your product
Heatmaps
Visualize clicks, scrolls, and engagement

Action

Guides and Surveys
Guide your users and collect feedback
Feature Experimentation
Innovate with personalized product experiences
Web Experimentation
Drive conversion with A/B testing powered by data
Feature Management
Build fast, target easily, and learn as you ship
Activation
Unite data across teams

Data

Warehouse-native Amplitude
Unlock insights from your data warehouse
Data Governance
Complete data you can trust
Security & Privacy
Keep your data secure and compliant
Integrations
Connect Amplitude to hundreds of partners
Solutions
Solutions that drive business results
Deliver customer value and drive business outcomes
Amplitude Solutions →

Industry

Financial Services
Personalize the banking experience
B2B
Maximize product adoption
Media
Identify impactful content
Healthcare
Simplify the digital healthcare experience
Ecommerce
Optimize for transactions

Use Case

Acquisition
Get users hooked from day one
Retention
Understand your customers like no one else
Monetization
Turn behavior into business

Team

Product
Fuel faster growth
Data
Make trusted data accessible
Engineering
Ship faster, learn more
Marketing
Build customers for life
Executive
Power decisions, shape the future

Size

Startups
Free analytics tools for startups
Enterprise
Advanced analytics for scaling businesses
Resources

Learn

Blog
Thought leadership from industry experts
Resource Library
Expertise to guide your growth
Compare
See how we stack up against the competition
Glossary
Learn about analytics, product, and technical terms
Explore Hub
Detailed guides on product and web analytics

Connect

Community
Connect with peers in product analytics
Events
Register for live or virtual events
Customers
Discover why customers love Amplitude
Partners
Accelerate business value through our ecosystem

Support & Services

Customer Help Center
All support resources in one place: policies, customer portal, and request forms
Developer Hub
Integrate and instrument Amplitude
Academy & Training
Become an Amplitude pro
Professional Services
Drive business success with expert guidance and support
Product Updates
See what's new from Amplitude

Tools

Benchmarks
Understand how your product compares
Templates
Kickstart your analysis with custom dashboard templates
Tracking Guides
Learn how to track events and metrics with Amplitude
Maturity Model
Learn more about our digital experience maturity model
Pricing
LoginContact salesGet started

AI

AI AgentsAI VisibilityAI FeedbackAmplitude MCP

Insights

Product AnalyticsMarketing AnalyticsSession ReplayHeatmaps

Action

Guides and SurveysFeature ExperimentationWeb ExperimentationFeature ManagementActivation

Data

Warehouse-native AmplitudeData GovernanceSecurity & PrivacyIntegrations
Amplitude Solutions →

Industry

Financial ServicesB2BMediaHealthcareEcommerce

Use Case

AcquisitionRetentionMonetization

Team

ProductDataEngineeringMarketingExecutive

Size

StartupsEnterprise

Learn

BlogResource LibraryCompareGlossaryExplore Hub

Connect

CommunityEventsCustomersPartners

Support & Services

Customer Help CenterDeveloper HubAcademy & TrainingProfessional ServicesProduct Updates

Tools

BenchmarksTemplatesTracking GuidesMaturity Model
LoginSign Up

How to Interpret Emotion and Intent Through Behavioral Analytics

Understanding the emotion and intent of your users sounds like a lofty, mythical aim, but it’s really nothing more than a step-by-step process.
Insights

Sep 21, 2016

9 min read

Archana Madhavan

Archana Madhavan

Senior Learning Experience Designer, Amplitude

How to Interpret Emotion and Intent Through Behavioral Analytics

You can track a ton of data on how your users interact with your app: how often they come back, what time of day they’re most active, what characteristics make someone more likely to become an active user. But the end-goal is to know not how often your users are active but how they _feel _and _what they want _from your app. For behavioral analytics, nothing is more important than these two factors:

  • Emotion: Does your app reward its users? Does it make people feel good, or does it bore them? Fundamental to building habitual usage is understanding how to trigger user action, and you do that by tapping into their emotions. Looking at users who are already hooked is the best way to understand how.
  • Intent: What are people trying to do with your app? There’s only one way for an app to succeed—it must bring people to something they want faster, more efficiently, more affordably, or simply better than they could before. Understand where people want to go and you can better optimize your machine to take them there.
    When you understand the real root cause of a habit—both from a practical (the job-to-be-done) and psychological standpoint—then it becomes possible to break it—or bring that value to an exponential number of new users. Understanding the emotion and intent of your users sounds like a lofty, mythical aim, but it’s really nothing more than a step-by-step process.

1. Pick the Right Events

The first task to tackle is the actual event tracking. The most common mistake people make early on is tracking so many events that they can’t get a handle on the data that actually matters for understanding emotion and intent.

20 is a reasonable number of events for an app that’s not too feature-rich. Here’s a list of features from a music-playing app, with total number of times performed and percentage change for each feature listed on the right.

List of events for music-playing app

Let’s look at Favoriting Songs. When you’re looking to understand emotion and intent, you want to look at events that indicate some expression of need or desire on the user’s part.

“Favoriting” a song is a way for the user to express a very specific feeling: “I like this song, and I want to save it for later.” Or, “I want to demonstrate to this app that I really like this song because I think that will improve my experience in some way.”

It’s easy to get far more granular. You could track every conceivable event or dive in really deep on individual event types—Favorite 4 Taylor Swift Songs, for instance—but simplicity is generally best. Track every single instance of a user touching their screen, the exact location of the impact and its three-dimensional velocity, and you’re going to track way, way too much data.

If you’re interested in capturing user intent and behavior, you need to be very selective about exactly which parts of the user experience, from actions to gestures, you want to track.

2. Track Behavior Against Retention

Amplitude’s Compass feature allows you to get a bird’s eye view on all your behavioral cohorts, plotting every event that you track against retention correlation and frequency at which they’re performed. It’s a comprehensive overview of **what actions predict retention in your app **and how often active users are doing what.

Here’s a Compass chart for our Favorite Song feature. At the top you can see the traditional cohort chart, including Favorite Song’s correlation with four-week retention graphed across the whole first week of a user’s time with the app:

  • .10 correlation between users Favoriting a Song within 1 day of signing up and being retained for four weeks
  • .15 correlation between users Favoriting a Song within 2 days of signing up and being retained for four weeks, and so on
Amplitude Compass report

To the right is a breakdown of Favorite Song’s overall correlation with user retention—moderately predictive, in this case. 20% of users _did _Favorite a Song within their first seven days of use and the overall correlation score was .316.

Interestingly, three or more FavoriteSong events was ranked the event most predictive of fourth-week retention. You can see the total frequency breakdown on the left. (Note: Favoriting Songs 18 or 19 or 20 times might _technically _correlate better with long-term retention, but the number of users doing them wouldn’t be high enough for statistical significance in this case.)

This is the most efficient way to start drawing conclusions about why users go from newly registered to testing your app out to falling into a habitual pattern of behavior. Finding those Aha! moments and quantifying them is what will help you bring your app into line with what your users genuinely, deep-down, want.

3. Define Your Cohorts

You have your events, and you have your behavioral cohorts to examine—here’s where it gets interesting.

Now you can see not only how many people “favorite 3 songs in one day” and how many don’t, but watch as users gradually transition from one group to the other over time.

Behavioral cohorts offer a simple way to group your users by the actions they take inside your app within a certain timeframe, and then analyze those groups. You can look at your most consistent users, your most active overall, or the inverses of both.

In Amplitude, cohorts are created in an intuitive WYSIWYG logic editor. Set your parameters, name it, and your cohort is good to go. In this example, we’ve created a cohort based on users who:

performed event Favorite Song >= 3 times _ within 1 days of first use_

We enter “Favorite >= 3 Songs” for our title, save it as a Global cohort, and then fill out our parameters above. We specify that users should have Favorited a Song >= 3 times

Again, keep it simple. Your intuition of how people think about your app won’t necessarily square with the reality of how people use it. When you’re sure that you have some special insight, it’s easy to get very complex:

performed event Favorite Song >= 62 times _ within 27 days_ OR performed event Add to Playlist >= 13 times _ within 24 days_

This is how your definition of daily active user can spiral out of control as you search for a magic bullet. The problem is that it gets a lot harder to measure and find statistical significance for a definition so complex. Best to choose something higher-level, because you can always take a deeper dive into that when analyzing your different behavioral cohorts.

Let’s graph retention for users who Favorited a Song >= 3 times in their first week next to the retention for users who both Favorited a Song >= 3 times in their first week _and _Joined >= 1 community:

Cohorts retention graph

Beginning from Day 1, the two behavioral cohorts diverge. Over 70% of the Favoriting + Community Joining cohort is still around, but only about 50% of the Favoriting cohort is. That is a statistically significant difference.

It’s not necessarily evidence of anything—but it’s a lead to investigate. You might want to now examine whether users who are in Communities Favorite more songs, whether Favoriting at a certain frequency leads to Community Joining, or what other behaviors these Favoriting + Community Joining users are exhibiting.

As you learn more about your users, you’ll rule out certain paths and find value down others. The only way to tell if you’re going down the right one is to test different hypotheses and see if they track with how people actually behave.

What Users Want

To know intent and emotion, you must know the actual people who are behind the screen. Without some understanding of _why _they like your app and want to use it over and over, you won’t get very far in bringing that experience to the wider world.

You don’t need a massive base of obsessed users for this. You don’t need to track a million different events and hire a team of data scientists. What you need is simply an elegant and repeatable process for making sense of how your users feel and what they want to accomplish with your product.


For more on setting up, launching, and making your mobile app sticky, check out our Mobile Analytics resource page. photo credit: WOCinTech Chat

About the author
Archana Madhavan

Archana Madhavan

Senior Learning Experience Designer, Amplitude

More from Archana

Archana is a Senior Learning Experience Designer on the Customer Education team at Amplitude. She develops educational content and courses to help Amplitude users better analyze their customer data to build better products.

More from Archana
Topics
Platform
  • Product Analytics
  • Feature Experimentation
  • Feature Management
  • Web Analytics
  • Web Experimentation
  • Session Replay
  • Activation
  • Guides and Surveys
  • AI Agents
  • AI Visibility
  • AI Feedback
  • Amplitude MCP
Compare us
  • Adobe
  • Google Analytics
  • Mixpanel
  • Heap
  • Optimizely
  • Fullstory
  • Pendo
Resources
  • Resource Library
  • Blog
  • Product Updates
  • Amp Champs
  • Amplitude Academy
  • Events
  • Glossary
Partners & Support
  • Contact Us
  • Customer Help Center
  • Community
  • Developer Docs
  • Find a Partner
  • Become an affiliate
Company
  • About Us
  • Careers
  • Press & News
  • Investor Relations
  • Diversity, Equity & Inclusion
Terms of ServicePrivacy NoticeAcceptable Use PolicyLegal
EnglishJapanese (日本語)Korean (한국어)Español (Spain)Português (Brasil)Português (Portugal)FrançaisDeutsch
© 2025 Amplitude, Inc. All rights reserved. Amplitude is a registered trademark of Amplitude, Inc.
Blog
InsightsProductCompanyCustomers
Topics

101

AI

APJ

Acquisition

Adobe Analytics

Amplify

Amplitude Academy

Amplitude Activation

Amplitude Analytics

Amplitude Audiences

Amplitude Community

Amplitude Feature Experimentation

Amplitude Guides and Surveys

Amplitude Heatmaps

Amplitude Made Easy

Amplitude Session Replay

Amplitude Web Experimentation

Amplitude on Amplitude

Analytics

B2B SaaS

Behavioral Analytics

Benchmarks

Churn Analysis

Cohort Analysis

Collaboration

Consolidation

Conversion

Customer Experience

Customer Lifetime Value

DEI

Data

Data Governance

Data Management

Data Tables

Digital Experience Maturity

Digital Native

Digital Transformer

EMEA

Ecommerce

Employee Resource Group

Engagement

Event Tracking

Experimentation

Feature Adoption

Financial Services

Funnel Analysis

Getting Started

Google Analytics

Growth

Healthcare

How I Amplitude

Implementation

Integration

LATAM

Life at Amplitude

MCP

Machine Learning

Marketing Analytics

Media and Entertainment

Metrics

Modern Data Series

Monetization

Next Gen Builders

North Star Metric

Partnerships

Personalization

Pioneer Awards

Privacy

Product 50

Product Analytics

Product Design

Product Management

Product Releases

Product Strategy

Product-Led Growth

Recap

Retention

Startup

Tech Stack

The Ampys

Warehouse-native Amplitude

Recommended Reading

article card image
Read 
Product
Getting Started: Product Analytics Isn’t Just for Analysts

Dec 5, 2025

5 min read

article card image
Read 
Insights
Vibe Check Part 3: When Vibe Marketing Goes Off the Rails

Dec 4, 2025

8 min read

article card image
Read 
Customers
How CAFU Tripled Engagement and Boosted Conversions 20%+

Dec 4, 2025

8 min read

article card image
Read 
Customers
The Future is Data-Driven: Introducing the Winners of the Ampy Awards 2025

Dec 2, 2025

6 min read

Explore Related Content

Integration
Using Behavioral Analytics for Growth with the Amplitude App on HubSpot

Jun 17, 2024

10 min read

Personalization
Identity Resolution: The Secret to a 360-Degree Customer View

Feb 16, 2024

10 min read

Product
Inside Warehouse-native Amplitude: A Technical Deep Dive

Jun 27, 2023

15 min read

Guide
5 Proven Strategies to Boost Customer Engagement

Jul 12, 2023

Video
Designing High-Impact Experiments

May 13, 2024

Startup
9 Direct-to-consumer Marketing Tactics to Accelerate Ecommerce Growth

Feb 20, 2024

10 min read

Growth
Leveraging Analytics to Achieve Product-Market Fit

Jul 20, 2023

10 min read

Product
iFood Serves Up 54% More Checkouts with Error Message Makeover

Oct 7, 2024

9 min read