Platform

AI

AI Agents
Sense, decide, and act faster than ever before
AI Visibility
See how your brand shows up in AI search
AI Feedback
Distill what your customers say they want
Amplitude MCP
Insights from the comfort of your favorite AI tool

Insights

Product Analytics
Understand the full user journey
Marketing Analytics
Get the metrics you need with one line of code
Session Replay
Visualize sessions based on events in your product
Heatmaps
Visualize clicks, scrolls, and engagement

Action

Guides and Surveys
Guide your users and collect feedback
Feature Experimentation
Innovate with personalized product experiences
Web Experimentation
Drive conversion with A/B testing powered by data
Feature Management
Build fast, target easily, and learn as you ship
Activation
Unite data across teams

Data

Warehouse-native Amplitude
Unlock insights from your data warehouse
Data Governance
Complete data you can trust
Security & Privacy
Keep your data secure and compliant
Integrations
Connect Amplitude to hundreds of partners
Solutions
Solutions that drive business results
Deliver customer value and drive business outcomes
Amplitude Solutions →

Industry

Financial Services
Personalize the banking experience
B2B
Maximize product adoption
Media
Identify impactful content
Healthcare
Simplify the digital healthcare experience
Ecommerce
Optimize for transactions

Use Case

Acquisition
Get users hooked from day one
Retention
Understand your customers like no one else
Monetization
Turn behavior into business

Team

Product
Fuel faster growth
Data
Make trusted data accessible
Engineering
Ship faster, learn more
Marketing
Build customers for life
Executive
Power decisions, shape the future

Size

Startups
Free analytics tools for startups
Enterprise
Advanced analytics for scaling businesses
Resources

Learn

Blog
Thought leadership from industry experts
Resource Library
Expertise to guide your growth
Compare
See how we stack up against the competition
Glossary
Learn about analytics, product, and technical terms
Explore Hub
Detailed guides on product and web analytics

Connect

Community
Connect with peers in product analytics
Events
Register for live or virtual events
Customers
Discover why customers love Amplitude
Partners
Accelerate business value through our ecosystem

Support & Services

Customer Help Center
All support resources in one place: policies, customer portal, and request forms
Developer Hub
Integrate and instrument Amplitude
Academy & Training
Become an Amplitude pro
Professional Services
Drive business success with expert guidance and support
Product Updates
See what's new from Amplitude

Tools

Benchmarks
Understand how your product compares
Templates
Kickstart your analysis with custom dashboard templates
Tracking Guides
Learn how to track events and metrics with Amplitude
Maturity Model
Learn more about our digital experience maturity model
Pricing
LoginContact salesGet started

AI

AI AgentsAI VisibilityAI FeedbackAmplitude MCP

Insights

Product AnalyticsMarketing AnalyticsSession ReplayHeatmaps

Action

Guides and SurveysFeature ExperimentationWeb ExperimentationFeature ManagementActivation

Data

Warehouse-native AmplitudeData GovernanceSecurity & PrivacyIntegrations
Amplitude Solutions →

Industry

Financial ServicesB2BMediaHealthcareEcommerce

Use Case

AcquisitionRetentionMonetization

Team

ProductDataEngineeringMarketingExecutive

Size

StartupsEnterprise

Learn

BlogResource LibraryCompareGlossaryExplore Hub

Connect

CommunityEventsCustomersPartners

Support & Services

Customer Help CenterDeveloper HubAcademy & TrainingProfessional ServicesProduct Updates

Tools

BenchmarksTemplatesTracking GuidesMaturity Model
LoginSign Up

Popular Data Validation Techniques for Analytics & Why You Need Them

Why data validation is important and how you can get started today.
Insights

Dec 18, 2022

12 min read

Franciska Dethlefsen

Franciska Dethlefsen

Former Head of Growth Marketing, Amplitude

Proactive data validation

Editor’s note: this article was originally published on the Iteratively blog on December 14, 2020.


At the end of the day, your data analytics needs to be tested like any other code. If you don’t validate this code—and the data it generates—it can be costly (like $9.7-million-dollars-per-year costly, according to Gartner).

To avoid this fate, companies and their engineers can leverage a number of proactive and reactive data validation techniques. We heavily recommend the former, as we’ll explain below. A proactive approach to data validation will help companies ensure that the data they have is clean and ready to work with.

Reactive vs. proactive data validation techniques: Solve data issues before they become a problem

“An ounce of prevention is worth a pound of cure.” It’s an old saying that’s true in almost any situation, including data validation techniques for analytics. Another way to say it is that it’s better to be proactive than it is to be reactive.

The purpose of any data validation is to identify where data might be inaccurate, inconsistent, incomplete, or even missing.

By definition, reactive data validation takes place after the fact and uses anomaly detection to identify any issues your data may have and to help ease the symptoms of bad data. While these methods are better than nothing, they don’t solve the core problems causing the bad data in the first place.

Instead, we believe teams should try to embrace proactive data validation techniques for their analytics, such as type safety and schematization, to ensure the data they get is accurate, complete, and in the expected structure (and that future team members don’t have to wrestle with bad analytics code).

While it might seem obvious to choose the more comprehensive validation approach, many teams end up using reactive data validation. This can be for a number of reasons. Often, analytics code is an afterthought for many non-data teams and therefore left untested.

It’s also common, unfortunately, for data to be processed without any validation. In addition, poor analytics code only gets noticed when it’s really bad, usually weeks later when someone notices a report is egregiously wrong or even missing.

Reactive data validation techniques may look like transforming your data in your warehouse with a tool like dbt or Dataform.

While all these methods may help you solve your data woes (and often with objectively great tooling), they still won’t help you heal the core cause of your bad data (e.g., piecemeal data governance or analytics that are implemented on a project-by-project basis without cross-team communication) in the first place, leaving you coming back to them every time.

Reactive data validation alone is not sufficient; you need to employ proactive data validation techniques in order to be truly effective and avoid the costly problems mentioned earlier. Here’s why:

  • Data is a team sport. It’s not just up to one department or one individual to ensure your data is clean. It takes everyone working together to ensure high-quality data and solve problems before they happen.
  • Data validation should be part of the Software Development Life Cycle (SDLC). When you integrate it into your SDLC and in parallel to your existing test-driven development and your automated QA process (instead of adding it as an afterthought), you save time by preventing data issues rather than troubleshooting them later.
  • Proactive data validation can be integrated into your existing tools and CI/CD pipelines. This is easy for your development teams because they’re already invested in test automation and can now quickly extend it to add coverage for analytics as well.
  • Proactive data validation testing is one of the best ways fast-moving teams can operate efficiently. It ensures they can iterate quickly and avoid data drift and other downstream issues.
  • Proactive data validation gives you the confidence to change and update your code as needed while minimizing the number of bugs you’ll have to squash later on. This proactive process ensures you and your team are only changing the code that’s directly related to the data you’re concerned with.

Now that we’ve established why proactive data validation is important, the next question is: How do you do it? What are the tools and methods teams employ to ensure their data is good before problems arise?

Let’s dive in.

Methods of data validation

Data validation isn’t just one step that happens at a specific point. It can happen at multiple points in the data lifecycle—at the client, at the server, in the pipeline, or in the warehouse itself.

It’s actually very similar to software testing writ large in a lot of ways. There is, however, one key difference. You aren’t testing the outputs alone; you’re also confirming that the inputs of your data are correct.

Let’s take a look at what data validation looks like at each location, examining which are reactive and which are proactive.

Data validation techniques in the client

You can use tools like Amplitude Data to leverage type safety, unit testing, and linting (static code analysis) for client-side data validation.

Now, this is a great jumping-off point, but it’s important to understand what kind of testing this sort of tool is enabling you to do at this layer. Here’s a breakdown:

  • Type safety is when the compiler validates the data types and implementation instructions at the source, preventing downstream errors because of typos or unexpected variables.
  • Unit testing is when you test a specific selection of code in isolation. Unfortunately, most teams don’t integrate analytics into their unit tests when it comes to validating their analytics.
  • A/B testing is when you test your analytics flow against a golden-state set of data (a version of your analytics that you know was perfect) or a copy of your production data. This helps you figure out if the changes you’re making are good and an improvement on the existing situation.

Data validation techniques in the pipeline

Data validation in the pipeline is all about making sure that the data being sent by the client matches the data format in your warehouse. If the two aren’t on the same page, your data consumers (product managers, data analysts, etc.) aren’t going to get useful information on the other side.

Data validation methods in the pipeline may look like this:

  • Schema validation to ensure your event tracking matches what has been defined in your schema registry.
  • Integration and component testing via relational, unique, and surrogate key utility tests in a tool like dbt to make sure tracking between platforms works well.
  • Freshness testing via a tool like dbt to determine how “fresh” your source data is (aka how up-to-date and healthy it is).
  • Distributional tests with a tool like Great Expectations to get alerts when datasets or samples don’t match the expected inputs and make sure that changes made to your tracking don’t mess up existing data streams.

Data validation techniques in the warehouse

You can use dbt testing, Dataform testing, and Great Expectations to ensure that data being sent to your warehouse conforms to the conventions you expect and need. You can also do transformations at this layer, including type checking and type safety within those transformations, but we wouldn’t recommend this method as your primary validation technique since it’s reactive.

At this point, the validation methods available to teams include validating that the data conforms to certain conventions, then transforming it to match them. Teams can also use relationship and freshness tests with dbt, as well as value/range testing using Great Expectations.

All of this tool functionality comes down to a few key data validation techniques at this layer:

  • Schematization to make sure CRUD data and transformations conform to set conventions.
  • Security testing to ensure data complies with security requirements like GDPR.
  • Relationship testing in tools like dbt to make sure fields in one model map to fields in a given table (aka referential integrity).
  • Freshness and distribution testing (as we mentioned in the pipeline section).
  • Range and type checking that confirms the data being sent from the client is within the warehouse’s expected range or format.

A great example of many of these tests in action can be found by digging into Lyft’s discovery and metadata engine Amundsen. This tool lets data consumers at the company search user metadata to increase both its usability and security. Lyft’s main method of ensuring data quality and usability is a kind of versioning via a graph-cleansing Airflow task that deletes old, duplicate data when new data is added to their warehouse.

Why now is the time to embrace better data validation techniques

In the past, data teams struggled with data validation because their organizations didn’t realize the importance of data hygiene and governance. That’s not the world we live in anymore.

Companies have come to realize that data quality is critical. Just cleaning up bad data in a reactive manner isn’t good enough. Hiring teams of data engineers to clean up the data through transformation or writing endless SQL queries is an unnecessary and inefficient use of time and money.

It used to be acceptable to have data that are 80% accurate (give or take, depending on the use case), leaving a 20% margin of error. That might be fine for simple analysis, but it’s not good enough for powering a product recommendation engine, detecting anomalies, or making critical business or product decisions.

Companies hire engineers to create products and do great work. If they have to spend time dealing with bad data, they’re not making the most of their time. But data validation gives them that time back to focus on what they do best: creating value for the organization.

The good news is that high-quality data is within reach. To achieve it, companies need to help everyone understand its value by breaking down the silos between data producers and data consumers. Then, companies should throw away the spreadsheets and apply better engineering practices to their analytics, such as versioning and schematization. Finally, they should make sure data best practices are followed throughout the organization with a plan for tracking and data governance.

Invest in proactive analytics validation to earn data dividends

In today’s world, reactive, implicit data validation tools and methods are just not enough anymore. They cost you time, money, and, perhaps most importantly, trust.

To avoid this fate, embrace a philosophy of proactivity. Identify issues before they become expensive problems by validating your analytics data from the beginning and throughout the software development life cycle.

Get started with product analytics
About the author
Franciska Dethlefsen

Franciska Dethlefsen

Former Head of Growth Marketing, Amplitude

More from Franciska

Franciska is the former Head of Growth Marketing at Amplitude, where she led the charge on user acquisition and PLG strategy and execution. Prior to that, she was Head of Growth at Iteratively (acquired by Amplitude) and before that Franciska built out the marketing function at Snowplow Analytics.

More from Franciska
Topics

Behavioral Analytics

Collaboration

Data

Data Governance

Data Management

Platform
  • Product Analytics
  • Feature Experimentation
  • Feature Management
  • Web Analytics
  • Web Experimentation
  • Session Replay
  • Activation
  • Guides and Surveys
  • AI Agents
  • AI Visibility
  • AI Feedback
  • Amplitude MCP
Compare us
  • Adobe
  • Google Analytics
  • Mixpanel
  • Heap
  • Optimizely
  • Fullstory
  • Pendo
Resources
  • Resource Library
  • Blog
  • Product Updates
  • Amp Champs
  • Amplitude Academy
  • Events
  • Glossary
Partners & Support
  • Contact Us
  • Customer Help Center
  • Community
  • Developer Docs
  • Find a Partner
  • Become an affiliate
Company
  • About Us
  • Careers
  • Press & News
  • Investor Relations
  • Diversity, Equity & Inclusion
Terms of ServicePrivacy NoticeAcceptable Use PolicyLegal
EnglishJapanese (日本語)Korean (한국어)Español (Spain)Português (Brasil)Português (Portugal)FrançaisDeutsch
© 2025 Amplitude, Inc. All rights reserved. Amplitude is a registered trademark of Amplitude, Inc.

Recommended Reading

article card image
Read 
Product
Getting Started: Product Analytics Isn’t Just for Analysts

Dec 5, 2025

5 min read

article card image
Read 
Insights
Vibe Check Part 3: When Vibe Marketing Goes Off the Rails

Dec 4, 2025

8 min read

article card image
Read 
Customers
How CAFU Tripled Engagement and Boosted Conversions 20%+

Dec 4, 2025

8 min read

article card image
Read 
Customers
The Future is Data-Driven: Introducing the Winners of the Ampy Awards 2025

Dec 2, 2025

6 min read

Explore Related Content

Integration
Using Behavioral Analytics for Growth with the Amplitude App on HubSpot

Jun 17, 2024

10 min read

Personalization
Identity Resolution: The Secret to a 360-Degree Customer View

Feb 16, 2024

10 min read

Product
Inside Warehouse-native Amplitude: A Technical Deep Dive

Jun 27, 2023

15 min read

Guide
5 Proven Strategies to Boost Customer Engagement

Jul 12, 2023

Video
Designing High-Impact Experiments

May 13, 2024

Startup
9 Direct-to-consumer Marketing Tactics to Accelerate Ecommerce Growth

Feb 20, 2024

10 min read

Growth
Leveraging Analytics to Achieve Product-Market Fit

Jul 20, 2023

10 min read

Product
iFood Serves Up 54% More Checkouts with Error Message Makeover

Oct 7, 2024

9 min read

Blog
InsightsProductCompanyCustomers
Topics

101

AI

APJ

Acquisition

Adobe Analytics

Amplify

Amplitude Academy

Amplitude Activation

Amplitude Analytics

Amplitude Audiences

Amplitude Community

Amplitude Feature Experimentation

Amplitude Guides and Surveys

Amplitude Heatmaps

Amplitude Made Easy

Amplitude Session Replay

Amplitude Web Experimentation

Amplitude on Amplitude

Analytics

B2B SaaS

Behavioral Analytics

Benchmarks

Churn Analysis

Cohort Analysis

Collaboration

Consolidation

Conversion

Customer Experience

Customer Lifetime Value

DEI

Data

Data Governance

Data Management

Data Tables

Digital Experience Maturity

Digital Native

Digital Transformer

EMEA

Ecommerce

Employee Resource Group

Engagement

Event Tracking

Experimentation

Feature Adoption

Financial Services

Funnel Analysis

Getting Started

Google Analytics

Growth

Healthcare

How I Amplitude

Implementation

Integration

LATAM

Life at Amplitude

MCP

Machine Learning

Marketing Analytics

Media and Entertainment

Metrics

Modern Data Series

Monetization

Next Gen Builders

North Star Metric

Partnerships

Personalization

Pioneer Awards

Privacy

Product 50

Product Analytics

Product Design

Product Management

Product Releases

Product Strategy

Product-Led Growth

Recap

Retention

Startup

Tech Stack

The Ampys

Warehouse-native Amplitude