Platform

AI

AI Agents
Sense, decide, and act faster than ever before
AI Visibility
See how your brand shows up in AI search
AI Feedback
Distill what your customers say they want
Amplitude MCP
Insights from the comfort of your favorite AI tool

Insights

Product Analytics
Understand the full user journey
Marketing Analytics
Get the metrics you need with one line of code
Session Replay
Visualize sessions based on events in your product
Heatmaps
Visualize clicks, scrolls, and engagement

Action

Guides and Surveys
Guide your users and collect feedback
Feature Experimentation
Innovate with personalized product experiences
Web Experimentation
Drive conversion with A/B testing powered by data
Feature Management
Build fast, target easily, and learn as you ship
Activation
Unite data across teams

Data

Warehouse-native Amplitude
Unlock insights from your data warehouse
Data Governance
Complete data you can trust
Security & Privacy
Keep your data secure and compliant
Integrations
Connect Amplitude to hundreds of partners
Solutions
Solutions that drive business results
Deliver customer value and drive business outcomes
Amplitude Solutions →

Industry

Financial Services
Personalize the banking experience
B2B
Maximize product adoption
Media
Identify impactful content
Healthcare
Simplify the digital healthcare experience
Ecommerce
Optimize for transactions

Use Case

Acquisition
Get users hooked from day one
Retention
Understand your customers like no one else
Monetization
Turn behavior into business

Team

Product
Fuel faster growth
Data
Make trusted data accessible
Engineering
Ship faster, learn more
Marketing
Build customers for life
Executive
Power decisions, shape the future

Size

Startups
Free analytics tools for startups
Enterprise
Advanced analytics for scaling businesses
Resources

Learn

Blog
Thought leadership from industry experts
Resource Library
Expertise to guide your growth
Compare
See how we stack up against the competition
Glossary
Learn about analytics, product, and technical terms
Explore Hub
Detailed guides on product and web analytics

Connect

Community
Connect with peers in product analytics
Events
Register for live or virtual events
Customers
Discover why customers love Amplitude
Partners
Accelerate business value through our ecosystem

Support & Services

Customer Help Center
All support resources in one place: policies, customer portal, and request forms
Developer Hub
Integrate and instrument Amplitude
Academy & Training
Become an Amplitude pro
Professional Services
Drive business success with expert guidance and support
Product Updates
See what's new from Amplitude

Tools

Benchmarks
Understand how your product compares
Templates
Kickstart your analysis with custom dashboard templates
Tracking Guides
Learn how to track events and metrics with Amplitude
Maturity Model
Learn more about our digital experience maturity model
Pricing
LoginContact salesGet started

AI

AI AgentsAI VisibilityAI FeedbackAmplitude MCP

Insights

Product AnalyticsMarketing AnalyticsSession ReplayHeatmaps

Action

Guides and SurveysFeature ExperimentationWeb ExperimentationFeature ManagementActivation

Data

Warehouse-native AmplitudeData GovernanceSecurity & PrivacyIntegrations
Amplitude Solutions →

Industry

Financial ServicesB2BMediaHealthcareEcommerce

Use Case

AcquisitionRetentionMonetization

Team

ProductDataEngineeringMarketingExecutive

Size

StartupsEnterprise

Learn

BlogResource LibraryCompareGlossaryExplore Hub

Connect

CommunityEventsCustomersPartners

Support & Services

Customer Help CenterDeveloper HubAcademy & TrainingProfessional ServicesProduct Updates

Tools

BenchmarksTemplatesTracking GuidesMaturity Model
LoginSign Up

What Are the Components of Event Data?

Learn about the different components of event data and how to define events properly before you begin instrumentation.
Insights

May 11, 2022

13 min read

Arpit Choudhury

Arpit Choudhury

Founder, astorik

Event data components

This is part four of the five-part series on Customer Data and an excerpt from The Amplitude Guide to Behavioral Data & Event Tracking.

Customer Data comprises Event Data and Entity Data—you already know this if you’ve gone through part one (What Is Customer Data?).

In this guide, you will learn about the components of event data, the preferred naming convention to define events, the categories of entity data, and the two main types of entities.

Event Data

Since you have probably bought stuff online, let’s start with an ecommerce example.

When interacting with an ecommerce app (web or mobile), you typically buy a product by adding it to your cart, proceeding to checkout, and completing the payment—these are events that you perform when you go through the process of buying an item on the app.

The buyer journey, however, is not so straightforward and there are several other events that can take place such as:

  • A product is viewed
  • The cart is viewed
  • A product is removed from the cart
  • A coupon is applied
  • An address is chosen
  • A payment method is chosen
  • An order is completed

And so on.

Common events like Add to Cart, Proceed to Checkout, and Make Payment come to mind immediately but to understand user behavior, one also needs to track other events like those mentioned above.

Deciding which events to track and naming the events using a proper naming convention are the first two steps in the process of gathering event data.

What are the next two steps?

Glad you asked!

Each event is accompanied by event properties (or event attributes) that provide more context about an event. Deciding which properties to associate with an event and naming those properties are the next two steps in the process of gathering event data.

What’s in a name?

When it comes to data, everything.

A proper naming convention or taxonomy is what makes good data stand out from bad data and enables stakeholders to understand what they are looking at. Not maintaining a standardized taxonomy, on the other hand, is one of the main causes of data sets being skewed or bloated with redundancy.

Also, when working with customer data, not maintaining uniform casing when naming events and event properties is one of the biggest mistakes you can make—one that can have long-term ramifications. A good naming convention should always be accompanied by strict casing guidelines.

Here’s why:

Add to Cart, added_to_cart, productAdded, add to cart, Added to cart, Product Added are different ways to define the same event.

While none of these is wrong per se, and there are no set rules when it comes to naming events and properties, there are best practices that one should consider following.

The object-action naming convention has pretty much become the industry standard and for good reason—it clearly describes the action that has already taken place. Product Added definitely means that an object (product) is followed by an action (added).

Learn more about setting up a consistent taxonomy for your events.

Components of event data

There are two key components of an event—an entity (one or more) and event properties.

Associating entity data such as user_id with an event provides information about the user who performed the event.

In the absence of a unique identifier like user_id, event data will remain anonymous and there’ll be no way to know who performed said event. Similarly, in the context of B2B SaaS, where a user can potentially be part of multiple organizations, organization_id needs to be associated with events to know where events take place.

Besides entities, there are other pieces of information that can be gathered for the purpose of analysis and segmentation when events take place.

Going back to the ecommerce example, when a product is purchased, besides knowing who made the purchase, at the very least, you also need to know what product was purchased at what price, and when.

Those additional pieces of information are gathered in the form of event properties.

In part one of this series, it was mentioned that event data comprises three key elements:

  • The action or the event that took place
  • The timestamp or the precise date and time when the event took place
  • The state or all other properties associated with the event (known as event properties)

Let’s look at the event Product Added (the name in Proper Case as per the object-action framework for the event Add to Cart) and assume that it was performed by a user on Jan 1, 2020, at 10 a.m. UTC. The data gathered when the event took place includes the following:

  • The action: Product Added
  • The timestamp: 1577872800 (Unix timestamp for Jan 1, 2020, 10 a.m. UTC)
  • The state: 0123 (user_id), ABZ (product_id), 7.99 (price), and 2 (quantity)

As per this example, the properties associated with the event Product Added are user_id, product_id, price, and quantity, each of which provides more information about the event. The timestamp is associated with the event to know when it took place.

It is also useful to specify a name for the timestamp which is essentially an event property. It’s not mandatory to do so as the standard practice is to associate the timestamp as timestamp with every event when sending data to third-party tools; however, specifying a distinct name for the property that stores the timestamp can be helpful in the long run when you need to work with historical event data.

The recommended taxonomy for timestamps is the event name followed by “at”: product_added_at for the event Product Added.

You might have already noticed that snake_case is being used to define event properties which makes it easy to distinguish event names from event properties. That said, do keep in mind that there are no predefined rules here and you should choose whatever works best for you and your team.

Here’s a final look at the properties associated with the event Product Added and the data types of each of those properties:

Event data example 1

Specifying the data type for each property ensures consistency of data and makes the instrumentation process easier.

Side note: It’s good to keep in mind that user_id is a user property (entity data) that acts as the identifier for an event and is therefore passed as an event property.

It should now be clear that gathering event data comprises the following steps:

  • Deciding which events to track
  • Naming those events using a proper naming convention
  • Deciding which properties to associate with each event
  • Naming those properties using a proper naming convention

The next (and last) part of this series covers the process of deciding which events to track and what data to gather.

However, you should have a good idea of what to expect when looking at event data (whether in a tracking plan before instrumentation or inside a data destination such as your product analytics tool).

Some common events and their properties

Before moving on, take a look at a few common events and properties that are tracked by most tech products.

Event data example 2

Learn how to accurately track your event data in The Amplitude Guide to Behavioral Data & Event Tracking.

Entity types

It’s time to take an in-depth look at different entities and their properties. If you haven’t already, go through this guide to understand how entity data relates to event data.

In the first part of this series, it was mentioned that data shared by users falls under entity data. While that is true, not all entity data is shared by users themselves—entity data can also be generated.

Entity data comprises properties associated with the entity—if User is the entity, all information about a user is gathered in the form of user properties.

User_id is generated for every user by default in order to identify users (and acts as an identifier for events.)

That said, for the time being, forget about events and think about the different pieces of information that relate exclusively to users and tell you about their traits.

Types of entity data

Entity Data can be categorized into the following buckets (also mentioned in part 3 of this series):

  • Personally identifiable information such as name, email, and phone
  • Demographics such as age, gender, and location
  • Persona such as industry, job role, and goal.
  • Preferences such as brands, genres, and product categories.
  • Product-specific data such as products purchased, apps used, time spent, and subscription type.

The pieces of data under each bucket fall under user properties. In other words, user properties store various details and traits about users, enabling you to identify them and know more about them.

While most of the information comes from the user directly, certain user properties are generated automatically over time as a result of product usage.

But isn’t event data also generated due to product usage?

It sure is—user properties are additional details related to an event gathered when the event takes place. Let’s take a look at the Signed Up event and its properties:

Event data example 3

As you can see, all the properties associated with this event provide details about users—details that are either shared by users themselves (first_name, last_name, email, phone, country) or details that are generated automatically (signed_up_at, user_id).

It is helpful to keep in mind the following:

  • Some events like Signed Up or Email Verified are performed only once by every user and the various pieces of data gathered from such events translate into user properties.
  • Most user properties barring timestamps and identifiers are subject to change. A user can change their name, email, phone, location, industry, job role, etc. But the time of signing up (signed_up_at) or the unique identifier (user_id) cannot be changed by the user.

User properties vs. organization properties

With consumer apps, time spent, products purchased, songs played, or videos watched are properties associated with the user stored as user properties, the values of which are constantly updated with an increase in usage.

In the context of B2B SaaS, User and Organization are the main entities, and the events collected are tied to a user or an organization (or both).

There could be other group entities such as team or project with certain pieces of data tied to them, as is the case with most productivity tools—the process of gathering organization data is applicable in such cases, too.

Let’s take a look at some common user properties relevant to B2B SaaS products:

Event data example 5

When a user is part of an organization, many important pieces of information are tied to the organization and not the user.

Some common organization properties (also referred to as group properties) are as follows:

Event data example 5

It is important to keep in mind that the organization_id also acts as an identifier and should be associated with events to know under which organization did a certain event take place.

Keeping the following statements in mind can help differentiate between user properties and organization properties:

  • Every piece of information that helps define user cohorts—where they come from, who they are, what their objective is, or what they do inside a product—is stored as a user property.
  • Every piece of information that helps segment accounts or organizations—the account type, the revenue it generates, the products or features it uses, the resources it consumes, or the number of users who are part of it—is stored as an organization property (or group property).

Once you can differentiate between the above, it becomes easy to bring new entities (such as teams or projects) into the mix.

Next steps

You should now have a clear understanding of how to define events and their associated properties, as well as specify the properties of each entity (user and organization).

To start defining events and organizing your data today, read our Behavioral Data & Event Tracking guide, then get started with a free Amplitude account.

Behavioral Data Event Tracking
About the author
Arpit Choudhury

Arpit Choudhury

Founder, astorik

More from Arpit

Arpit is growing databeats (databeats.community), a B2B media company, whose mission is to beat the gap between data people and non-data people for good.

More from Arpit
Topics
Platform
  • Product Analytics
  • Feature Experimentation
  • Feature Management
  • Web Analytics
  • Web Experimentation
  • Session Replay
  • Activation
  • Guides and Surveys
  • AI Agents
  • AI Visibility
  • AI Feedback
  • Amplitude MCP
Compare us
  • Adobe
  • Google Analytics
  • Mixpanel
  • Heap
  • Optimizely
  • Fullstory
  • Pendo
Resources
  • Resource Library
  • Blog
  • Product Updates
  • Amp Champs
  • Amplitude Academy
  • Events
  • Glossary
Partners & Support
  • Contact Us
  • Customer Help Center
  • Community
  • Developer Docs
  • Find a Partner
  • Become an affiliate
Company
  • About Us
  • Careers
  • Press & News
  • Investor Relations
  • Diversity, Equity & Inclusion
Terms of ServicePrivacy NoticeAcceptable Use PolicyLegal
EnglishJapanese (日本語)Korean (한국어)Español (Spain)Português (Brasil)Português (Portugal)FrançaisDeutsch
© 2025 Amplitude, Inc. All rights reserved. Amplitude is a registered trademark of Amplitude, Inc.
Blog
InsightsProductCompanyCustomers
Topics

101

AI

APJ

Acquisition

Adobe Analytics

Amplify

Amplitude Academy

Amplitude Activation

Amplitude Analytics

Amplitude Audiences

Amplitude Community

Amplitude Feature Experimentation

Amplitude Guides and Surveys

Amplitude Heatmaps

Amplitude Made Easy

Amplitude Session Replay

Amplitude Web Experimentation

Amplitude on Amplitude

Analytics

B2B SaaS

Behavioral Analytics

Benchmarks

Churn Analysis

Cohort Analysis

Collaboration

Consolidation

Conversion

Customer Experience

Customer Lifetime Value

DEI

Data

Data Governance

Data Management

Data Tables

Digital Experience Maturity

Digital Native

Digital Transformer

EMEA

Ecommerce

Employee Resource Group

Engagement

Event Tracking

Experimentation

Feature Adoption

Financial Services

Funnel Analysis

Getting Started

Google Analytics

Growth

Healthcare

How I Amplitude

Implementation

Integration

LATAM

Life at Amplitude

MCP

Machine Learning

Marketing Analytics

Media and Entertainment

Metrics

Modern Data Series

Monetization

Next Gen Builders

North Star Metric

Partnerships

Personalization

Pioneer Awards

Privacy

Product 50

Product Analytics

Product Design

Product Management

Product Releases

Product Strategy

Product-Led Growth

Recap

Retention

Startup

Tech Stack

The Ampys

Warehouse-native Amplitude

Recommended Reading

article card image
Read 
Product
Getting Started: Product Analytics Isn’t Just for Analysts

Dec 5, 2025

5 min read

article card image
Read 
Insights
Vibe Check Part 3: When Vibe Marketing Goes Off the Rails

Dec 4, 2025

8 min read

article card image
Read 
Customers
How CAFU Tripled Engagement and Boosted Conversions 20%+

Dec 4, 2025

8 min read

article card image
Read 
Customers
The Future is Data-Driven: Introducing the Winners of the Ampy Awards 2025

Dec 2, 2025

6 min read

Explore Related Content

Integration
Using Behavioral Analytics for Growth with the Amplitude App on HubSpot

Jun 17, 2024

10 min read

Personalization
Identity Resolution: The Secret to a 360-Degree Customer View

Feb 16, 2024

10 min read

Product
Inside Warehouse-native Amplitude: A Technical Deep Dive

Jun 27, 2023

15 min read

Guide
5 Proven Strategies to Boost Customer Engagement

Jul 12, 2023

Video
Designing High-Impact Experiments

May 13, 2024

Startup
9 Direct-to-consumer Marketing Tactics to Accelerate Ecommerce Growth

Feb 20, 2024

10 min read

Growth
Leveraging Analytics to Achieve Product-Market Fit

Jul 20, 2023

10 min read

Product
iFood Serves Up 54% More Checkouts with Error Message Makeover

Oct 7, 2024

9 min read