Platform

AI

AI Agents
Sense, decide, and act faster than ever before
AI Visibility
See how your brand shows up in AI search
AI Feedback
Distill what your customers say they want
Amplitude MCP
Insights from the comfort of your favorite AI tool

Insights

Product Analytics
Understand the full user journey
Marketing Analytics
Get the metrics you need with one line of code
Session Replay
Visualize sessions based on events in your product
Heatmaps
Visualize clicks, scrolls, and engagement

Action

Guides and Surveys
Guide your users and collect feedback
Feature Experimentation
Innovate with personalized product experiences
Web Experimentation
Drive conversion with A/B testing powered by data
Feature Management
Build fast, target easily, and learn as you ship
Activation
Unite data across teams

Data

Warehouse-native Amplitude
Unlock insights from your data warehouse
Data Governance
Complete data you can trust
Security & Privacy
Keep your data secure and compliant
Integrations
Connect Amplitude to hundreds of partners
Solutions
Solutions that drive business results
Deliver customer value and drive business outcomes
Amplitude Solutions →

Industry

Financial Services
Personalize the banking experience
B2B
Maximize product adoption
Media
Identify impactful content
Healthcare
Simplify the digital healthcare experience
Ecommerce
Optimize for transactions

Use Case

Acquisition
Get users hooked from day one
Retention
Understand your customers like no one else
Monetization
Turn behavior into business

Team

Product
Fuel faster growth
Data
Make trusted data accessible
Engineering
Ship faster, learn more
Marketing
Build customers for life
Executive
Power decisions, shape the future

Size

Startups
Free analytics tools for startups
Enterprise
Advanced analytics for scaling businesses
Resources

Learn

Blog
Thought leadership from industry experts
Resource Library
Expertise to guide your growth
Compare
See how we stack up against the competition
Glossary
Learn about analytics, product, and technical terms
Explore Hub
Detailed guides on product and web analytics

Connect

Community
Connect with peers in product analytics
Events
Register for live or virtual events
Customers
Discover why customers love Amplitude
Partners
Accelerate business value through our ecosystem

Support & Services

Customer Help Center
All support resources in one place: policies, customer portal, and request forms
Developer Hub
Integrate and instrument Amplitude
Academy & Training
Become an Amplitude pro
Professional Services
Drive business success with expert guidance and support
Product Updates
See what's new from Amplitude

Tools

Benchmarks
Understand how your product compares
Templates
Kickstart your analysis with custom dashboard templates
Tracking Guides
Learn how to track events and metrics with Amplitude
Maturity Model
Learn more about our digital experience maturity model
Pricing
LoginContact salesGet started

AI

AI AgentsAI VisibilityAI FeedbackAmplitude MCP

Insights

Product AnalyticsMarketing AnalyticsSession ReplayHeatmaps

Action

Guides and SurveysFeature ExperimentationWeb ExperimentationFeature ManagementActivation

Data

Warehouse-native AmplitudeData GovernanceSecurity & PrivacyIntegrations
Amplitude Solutions →

Industry

Financial ServicesB2BMediaHealthcareEcommerce

Use Case

AcquisitionRetentionMonetization

Team

ProductDataEngineeringMarketingExecutive

Size

StartupsEnterprise

Learn

BlogResource LibraryCompareGlossaryExplore Hub

Connect

CommunityEventsCustomersPartners

Support & Services

Customer Help CenterDeveloper HubAcademy & TrainingProfessional ServicesProduct Updates

Tools

BenchmarksTemplatesTracking GuidesMaturity Model
LoginSign Up

How Patreon Embraces Cross-Functional Data Leadership

In her Amplify session, Director of Data Science Maura Church shared how Patreon empowered their teams with data to fuel growth in 2020.
Customers

Oct 30, 2020

9 min read

Aly McGue

Aly McGue

Former Customer Advocacy Director, Amplitude

How Patreon Embraces Cross-Functional Data Leadership

Patreon has experienced incredible growth over the last eight months, even in the midst of a global pandemic. A large part of their success can be attributed to effective cross-functional data leadership. At this year’s Amplify conference, Maura Church, director of data science at Patreon, shared how her team empowers the entire organization to make smart business decisions.

Data Science Across All Departments at Patreon

Patreon looks at data science as a horizontal layer that enables all teams across the business to make better decisions. This means it’s tightly integrated with many different departments, looping the data team in from start to finish.

Amplitude's blog image

Maura and her team ask specific questions of the metrics to ensure they’re getting the most value from the raw data.

  • How is the product and engineering team using data?
  • How is the creator partnerships (sales) team using data?
  • How is data helping finance and legal make better forecasts?

Knowing the answers to these questions helps Maura’s data science team understand how to best serve different departments and the business as a whole, enabling them to uncover actionable insights that teams can use to build campaigns and new products and contribute to overall business goals.

Patreon spends a lot of time thinking about a trifecta across all departments and functions: how they can build a better product that’s fueled by great marketing and a compelling brand and backed by a lot of their own finance. This approach is sustained and backed by data.

Amplitude's blog image

3 Keys to Strong Cross-Functional Data Leadership

Strong cross-functional data leadership is dependent on more than just collaboration and communication. To Maura, there are three keys to strong cross-departmental data leadership:

  1. Context
  2. Data relevance
  3. Storytelling

Context

Patreon tries to make sure data scientists sit with the individual product teams and are embedded in their decisions and what they’re trying to build. They don’t just hop in when data analysis is needed—this would require a briefing to get the data team up to speed.

When the data team is involved on a day-to-day basis with other departments, they have more context and an understanding of what they’re trying to accomplish. This enables them to recommend the most effective use of data.

Say, for example, you have a data scientist who goes from working on marketing analytics one day to machine learning the next and A/B testing the following day. They’re not going to have the business context and depth needed to make informed strategic decisions. Instead, someone from the data science team should be ingrained in each project from the beginning, so they have an intimate understanding of where the data comes into play.

Data Relevance

Data shouldn’t be the only factor in every decision. Sometimes, decisions will be led by user feedback or inspired by design.

Use data where it’s most useful and relevant. For example, at Patreon, they noticed differences in growth based on region in February and March 2020, when the COVID-19 pandemic spread across the world. Using data, Patreon deduced that faster subscription growth was linked to regions that had more government-sponsored financial support for creators.

Amplitude's blog image

Maura and her team dug into the data to find out which geographical growth segments were significant at the time. When an external event causes positive growth, they’ve learned to lean into that change and see if there’s an opportunity for productization.

Remember, it’s important you don’t look at data through tunnel vision. Instead, consider the bigger picture using various data points and qualitative inputs to give you a holistic overview of the organization.

Storytelling

Storytelling involves understanding what the data is showing about what’s happening in the business. The data team then has to make that story concise and clear, so all leaders across Patreon can make more informed decisions, enabling them to make a better product for creators.

It’s easy for eyes to glaze over when talking about metrics. That’s less likely though when the numbers tell a story.Stories are addictive, memorable, and elicit emotions. Stories also help reinforce the value of data across the organization.

It’s important to understand what story you and your teams are trying to tell and how data can help you tell it in a rigorous, honest, and better way.

Here’s an example of storytelling in action: a few years ago, Patreon launched a live-streaming option for creators. But data science wasn’t really involved in the decision around how to build the product and how big they could anticipate it to be. Maura and her team did some very basic analysis that looked at how many creators mentioned live streaming, but they lacked the context of sitting with the product team and understanding the end goal of live streaming.

As a result, the data science team was brought in after the fact to understand performance. While they had originally projected that 40% of creators would adopt the new live-streaming option, only about 1% actually did—despite great marketing and awareness.

This failure to integrate data science from the beginning and consider the story they were trying to tell led Patreon to rethink how they use data in their product and go-to-market process.

Using Cross-Functional Collaboration to Prepare for Growth in 2020

When the COVID-19 pandemic hit, Maura and her team were set up for success, with context, data relevance, and storytelling in place. They saw the potential for a positive impact on their product as more people stayed at home and were looking for entertainment.

Segmenting the Audience

Anticipating growth, the team paused and asked themselves, “What do we think could change with behavior?” They collected data on two key factors:

1. Churn: Patreon analyzed what might cause churn—financial and economic instability, in this case—and ways to reactivate patrons by providing support during such an anxious time. They reassured creators that the audience was there and growing.

Amplitude's blog image

2. Creators launching: Patreon also conducted a segmented, narrow analysis of creators launching and attributing their launch to stay-at-home orders due to COVID. They saw new types of creators and said, “What can we do in the product that’s going to help these creators? Maybe we can provide more resources.”

Amplitude's blog image

Turning the Data into a Story

Patreon took this data and turned it into a story, both for their internal teams and for the creators. Creators were anxious about stability, but Patreon was able to use data to show them how fans were flocking to the platform. And internally, they looked at ways to build a better product and ensure it’s resilient and scalable enough to handle a huge influx of growth.

Moving Forward with New Products and Rich Data

As a result, Patreon launched a new product for local businesses and helped those businesses earn hundreds of thousands of dollars of recurring membership revenue. Not only did they launch a new product, but they also tied it back to the data.

Patreon made sure these creators were tagged and identified as local businesses. So, if in a few years, Patreon wants to understand how local businesses grow versus podcasters or any other segment, they have that data and will be able to then help the business make even better decisions in the future.

Put Systems in Place for Sustainable Growth

Maura’s closing advice for cross-functional data leadership? Ensure you have a process for understanding changes in product metrics across all areas of the business and framing them as product opportunities. Think about the systems you might need for studying behavior over time and what segments you need to understand in your business. Check out the rest of Amplify’s compelling lineup andwatch session recordings here.

About the author
Aly McGue

Aly McGue

Former Customer Advocacy Director, Amplitude

More from Aly

Aly McGue is a former Customer Advocacy Director at Amplitude. She focuses on building and nurturing strong Amplitude advocates and bringing their stories to life.

More from Aly
Topics
Platform
  • Product Analytics
  • Feature Experimentation
  • Feature Management
  • Web Analytics
  • Web Experimentation
  • Session Replay
  • Activation
  • Guides and Surveys
  • AI Agents
  • AI Visibility
  • AI Feedback
  • Amplitude MCP
Compare us
  • Adobe
  • Google Analytics
  • Mixpanel
  • Heap
  • Optimizely
  • Fullstory
  • Pendo
Resources
  • Resource Library
  • Blog
  • Product Updates
  • Amp Champs
  • Amplitude Academy
  • Events
  • Glossary
Partners & Support
  • Contact Us
  • Customer Help Center
  • Community
  • Developer Docs
  • Find a Partner
  • Become an affiliate
Company
  • About Us
  • Careers
  • Press & News
  • Investor Relations
  • Diversity, Equity & Inclusion
Terms of ServicePrivacy NoticeAcceptable Use PolicyLegal
EnglishJapanese (日本語)Korean (한국어)Español (Spain)Português (Brasil)Português (Portugal)FrançaisDeutsch
© 2025 Amplitude, Inc. All rights reserved. Amplitude is a registered trademark of Amplitude, Inc.
Blog
InsightsProductCompanyCustomers
Topics

101

AI

APJ

Acquisition

Adobe Analytics

Amplify

Amplitude Academy

Amplitude Activation

Amplitude Analytics

Amplitude Audiences

Amplitude Community

Amplitude Feature Experimentation

Amplitude Guides and Surveys

Amplitude Heatmaps

Amplitude Made Easy

Amplitude Session Replay

Amplitude Web Experimentation

Amplitude on Amplitude

Analytics

B2B SaaS

Behavioral Analytics

Benchmarks

Churn Analysis

Cohort Analysis

Collaboration

Consolidation

Conversion

Customer Experience

Customer Lifetime Value

DEI

Data

Data Governance

Data Management

Data Tables

Digital Experience Maturity

Digital Native

Digital Transformer

EMEA

Ecommerce

Employee Resource Group

Engagement

Event Tracking

Experimentation

Feature Adoption

Financial Services

Funnel Analysis

Getting Started

Google Analytics

Growth

Healthcare

How I Amplitude

Implementation

Integration

LATAM

Life at Amplitude

MCP

Machine Learning

Marketing Analytics

Media and Entertainment

Metrics

Modern Data Series

Monetization

Next Gen Builders

North Star Metric

Partnerships

Personalization

Pioneer Awards

Privacy

Product 50

Product Analytics

Product Design

Product Management

Product Releases

Product Strategy

Product-Led Growth

Recap

Retention

Startup

Tech Stack

The Ampys

Warehouse-native Amplitude

Recommended Reading

article card image
Read 
Product
Getting Started: Product Analytics Isn’t Just for Analysts

Dec 5, 2025

5 min read

article card image
Read 
Insights
Vibe Check Part 3: When Vibe Marketing Goes Off the Rails

Dec 4, 2025

8 min read

article card image
Read 
Customers
How CAFU Tripled Engagement and Boosted Conversions 20%+

Dec 4, 2025

8 min read

article card image
Read 
Customers
The Future is Data-Driven: Introducing the Winners of the Ampy Awards 2025

Dec 2, 2025

6 min read

Explore Related Content

Integration
Using Behavioral Analytics for Growth with the Amplitude App on HubSpot

Jun 17, 2024

10 min read

Personalization
Identity Resolution: The Secret to a 360-Degree Customer View

Feb 16, 2024

10 min read

Product
Inside Warehouse-native Amplitude: A Technical Deep Dive

Jun 27, 2023

15 min read

Guide
5 Proven Strategies to Boost Customer Engagement

Jul 12, 2023

Video
Designing High-Impact Experiments

May 13, 2024

Startup
9 Direct-to-consumer Marketing Tactics to Accelerate Ecommerce Growth

Feb 20, 2024

10 min read

Growth
Leveraging Analytics to Achieve Product-Market Fit

Jul 20, 2023

10 min read

Product
iFood Serves Up 54% More Checkouts with Error Message Makeover

Oct 7, 2024

9 min read