Platform

AI

AI Agents
Sense, decide, and act faster than ever before
AI Visibility
See how your brand shows up in AI search
AI Feedback
Distill what your customers say they want
Amplitude MCP
Insights from the comfort of your favorite AI tool

Insights

Product Analytics
Understand the full user journey
Marketing Analytics
Get the metrics you need with one line of code
Session Replay
Visualize sessions based on events in your product
Heatmaps
Visualize clicks, scrolls, and engagement

Action

Guides and Surveys
Guide your users and collect feedback
Feature Experimentation
Innovate with personalized product experiences
Web Experimentation
Drive conversion with A/B testing powered by data
Feature Management
Build fast, target easily, and learn as you ship
Activation
Unite data across teams

Data

Warehouse-native Amplitude
Unlock insights from your data warehouse
Data Governance
Complete data you can trust
Security & Privacy
Keep your data secure and compliant
Integrations
Connect Amplitude to hundreds of partners
Solutions
Solutions that drive business results
Deliver customer value and drive business outcomes
Amplitude Solutions →

Industry

Financial Services
Personalize the banking experience
B2B
Maximize product adoption
Media
Identify impactful content
Healthcare
Simplify the digital healthcare experience
Ecommerce
Optimize for transactions

Use Case

Acquisition
Get users hooked from day one
Retention
Understand your customers like no one else
Monetization
Turn behavior into business

Team

Product
Fuel faster growth
Data
Make trusted data accessible
Engineering
Ship faster, learn more
Marketing
Build customers for life
Executive
Power decisions, shape the future

Size

Startups
Free analytics tools for startups
Enterprise
Advanced analytics for scaling businesses
Resources

Learn

Blog
Thought leadership from industry experts
Resource Library
Expertise to guide your growth
Compare
See how we stack up against the competition
Glossary
Learn about analytics, product, and technical terms
Explore Hub
Detailed guides on product and web analytics

Connect

Community
Connect with peers in product analytics
Events
Register for live or virtual events
Customers
Discover why customers love Amplitude
Partners
Accelerate business value through our ecosystem

Support & Services

Customer Help Center
All support resources in one place: policies, customer portal, and request forms
Developer Hub
Integrate and instrument Amplitude
Academy & Training
Become an Amplitude pro
Professional Services
Drive business success with expert guidance and support
Product Updates
See what's new from Amplitude

Tools

Benchmarks
Understand how your product compares
Templates
Kickstart your analysis with custom dashboard templates
Tracking Guides
Learn how to track events and metrics with Amplitude
Maturity Model
Learn more about our digital experience maturity model
Pricing
LoginContact salesGet started

AI

AI AgentsAI VisibilityAI FeedbackAmplitude MCP

Insights

Product AnalyticsMarketing AnalyticsSession ReplayHeatmaps

Action

Guides and SurveysFeature ExperimentationWeb ExperimentationFeature ManagementActivation

Data

Warehouse-native AmplitudeData GovernanceSecurity & PrivacyIntegrations
Amplitude Solutions →

Industry

Financial ServicesB2BMediaHealthcareEcommerce

Use Case

AcquisitionRetentionMonetization

Team

ProductDataEngineeringMarketingExecutive

Size

StartupsEnterprise

Learn

BlogResource LibraryCompareGlossaryExplore Hub

Connect

CommunityEventsCustomersPartners

Support & Services

Customer Help CenterDeveloper HubAcademy & TrainingProfessional ServicesProduct Updates

Tools

BenchmarksTemplatesTracking GuidesMaturity Model
LoginSign Up

5 Trends Shaping the Future of A/B Testing and Experimentation

Discover how A/B testing is evolving and transforming digital product strategies due to new technological developments.
Insights

Feb 28, 2024

10 min read

Ken Kutyn

Ken Kutyn

Senior Solutions Consultant, Amplitude

Abstract image of A/B testing different layouts

A/B testing in digital product management is like a chess game. Teams must be calculated, precise, and always a few steps ahead. It’s a strategic process where combining data with intuition leads to more successful outcomes—and it’s constantly evolving.


Several key trends are emerging, painting a picture of a future where experimentation is unified across product, engineering, and marketing teams to build better digital experiences that are data-driven and user-centric.


The following explores five key trends in experimentation and how technology advancements, like artificial intelligence (AI), are changing A/B testing. Also, get insights into adapting your team’s approach and investing in tech to stay ahead of digital product innovation.

Key takeaways

  • Non-technical teams will be more involved in experimentation with help from developers.
  • Companies are breaking down silos between marketing and product teams.
  • You can expect more investments in and attention to statistics, enabling teams to better understand the results of their experiments
  • Teams will continue using AI in experimentation while acknowledging its limitations.
  • The merging of analytics solutions and data warehouses significantly changes how experimentation is done.

1. Less developer (and more non-tech team) involvement

The role of developers in experimentation has always been cyclical. Historically, engineering teams led experimentation efforts, but around 2010, the rise of visual editors enabled non-technical marketing teams to play a more significant role in testing.


In 2017, issues related to web cookies, performance challenges, and the desire to apply experimentation in broader scenarios brought developers back into the fold. Product teams, as well as marketing teams equipped with coding skills, began to retake the helm.


Now, developer roles are shifting once more. Nearly every marketing automation, content management system (CMS), and customer relationship management (CRM) platform has some experimentation and personalization capabilities built in. Looking ahead at A/B testing, key trends are emerging that shift experimentation back to marketers and lessen the demand on developers:


  • Increased automation: The growing use of automation can streamline the testing process, reducing some of the manual effort that goes into experimentation.
  • Enhanced usability: There’s a continued focus on developing user-friendly interfaces with intuitive design elements that simplify complex testing scenarios.
  • Enhanced collaboration across teams and workflows: Emerging platforms that improve collaboration between technical and non-technical teams help increase learning velocity and facilitate sharing of insights and results.
  • Open platforms and integration: Previously, if non-technical teams needed to experiment, they had to use the A/B testing features built into their marketing tools (think CMS, orchestration, messaging, ads, etc.). However, because these capabilities were outside the core competency of most marketing point solutions, these features were often simplistic. The result? Teams leaned on developers to build experiments in a more robust product experimentation solution. Now, best-in-class experimentation programs bring marketing and product teams together to scale experimentation with more open and extensible solutions to meet both teams’ needs.


These developments have opened doors for experimentation without heavy developer involvement. Even those without extensive programming skills can engage more directly in experimentation.

2. Convergence of product and marketing

Marketing and product teams are merging and working more closely than ever in the context of experimentation and beyond, mirroring the evolution in analytics platforms. Amplitude has been at the forefront of this convergence, offering analytics that encompasses product and marketing capabilities to quickly understand the entire customer journey.


In experimentation, this means testing use cases extending across various stages of the user journey, from initial engagement on landing pages to sign-up, activation, engagement, retention, and even upsell opportunities—all within a single platform. This approach enables a more comprehensive understanding of the user experience, as it no longer segregates insights based on whether the user is interacting with marketing content or product features.


As Amplitude Vice President of Product, Partner, and Customer Marketing Courtney Burry points out: “Optimizing your customer journey requires a deep understanding of what customers are doing and where they’re facing challenges. It requires diving into every customer interaction across every channel, platform, and touchpoint.” Simply put, product and marketing teams must work together to truly deliver exceptional digital experiences—no matter where customers are.

3. Growing emphasis on statistical savviness in experimentation

There's an ongoing debate about how well-versed product managers and marketers need to be in statistics to run their own experiments. On the one hand, software vendors are simplifying test interpretation and minimizing the need for product and marketing teams to dive deep into statistical calculations. On the other hand, industry veterans like Ron Kohavi raise concerns about the misunderstanding of results due to over-reliance on auto-generated reports.


This tug of war points toward a few emerging trends in the future of A/B testing:


  • Using advanced statistical tools: Teams will likely adopt more sophisticated statistical tools to complement their existing software. These tools will provide a more comprehensive analysis of experiment data, enabling a clearer understanding of the results.
  • Investment in statistical training: Expect organizations to invest in statistical training for their teams. This training will empower team members to understand the nuances of A/B testing and make more informed decisions based on the data.
  • Hiring for statistical expertise: The growing demand for deeper statistical knowledge in experimentation may lead to a surge in hiring professionals with strong backgrounds in statistics.


The increasing focus on statistical understanding is crucial for designing, interpreting, and acting on experiments. Leading companies now aim for a practical approach, providing all users with clear, consistent data while enabling deeper insights beyond the basics.

4. Cautious use of AI in experimentation

AI’s capabilities in automating various aspects of experimentation are undeniable, from generating messaging copy to qualifying and analyzing data. These advancements are enabling teams to conduct more experiments with greater efficiency.


The primary use case for AI in experimentation is quickly generating user experience variants. However, it’s essential to acknowledge the limitations that come with AI in this context. The main drawbacks include poor quality of experiences and sample sizes that are too small to be statistically significant.


When you use AI for tasks like content creation and data qualification, try to maintain a balanced approach, using both the speed of AI and your team’s expertise. This thoughtful approach uses AI’s advantages while ensuring accurate, reliable, and useful results.

5. Advancements in warehouse-native A/B testing

The integration of analytics solutions and data warehouses is reshaping how organizations conduct experiments and bringing several key advancements to A/B testing experiments:


  • Richer targeting: With more comprehensive access to data, experimentation can become highly targeted. The ability to segment and test specific user groups based on more detailed data profiles leads to more effective and personalized experiments.
  • Better alignment across teams: A unified data source reduces data discrepancies between different teams, such as product and business intelligence (BI) teams. This helps ensure consistency in experiment design and analysis, driving better collaboration and decision-making.
  • Quicker experimentation cycles: Accessing tagged events and data points in one place accelerates experimentation. Teams can rapidly iterate and adapt experiments based on real-time data insights.


Despite these promising developments, there are still some unaddressed challenges. Integrating warehouse data to support functionalities like sticky bucketing, real-time targeting, and identity resolution is still a work in progress. As experimentation platforms improve, they’ll likely have features that work well with data warehouses’ functions and structures.


Embrace new trends to transform your A/B testing approach

By leaning into these trends, your team can achieve more precise targeting, deeper user insights, and efficient decision-making—ultimately leading to products your customers value and use regularly.


As experimentation and A/B testing evolve, partnering with vendors at the forefront of new trends is crucial. Amplitude Experiment enables you to effectively test, analyze, and enhance your product on a large scale.

Read our comprehensive guide on using Amplitude for effective A/B testing and unlock the full potential of your experimentation strategies.

Follow me on LinkedIn for more product and analytics content.

About the author
Ken Kutyn

Ken Kutyn

Senior Solutions Consultant, Amplitude

More from Ken

Ken has 8 years experience in the analytics, experimentation, and personalization space. Originally from Vancouver Canada, he has lived and worked in London, Amsterdam, and San Francisco and is now based in Singapore. Ken has a passion for experimentation and data-driven decision-making and has spoken at several product development conferences. In his free time, he likes to travel around South East Asia with his family, bake bread, and explore the Singapore food scene.

More from Ken
Topics

Experimentation

Amplitude Feature Experimentation

Platform
  • Product Analytics
  • Feature Experimentation
  • Feature Management
  • Web Analytics
  • Web Experimentation
  • Session Replay
  • Activation
  • Guides and Surveys
  • AI Agents
  • AI Visibility
  • AI Feedback
  • Amplitude MCP
Compare us
  • Adobe
  • Google Analytics
  • Mixpanel
  • Heap
  • Optimizely
  • Fullstory
  • Pendo
Resources
  • Resource Library
  • Blog
  • Product Updates
  • Amp Champs
  • Amplitude Academy
  • Events
  • Glossary
Partners & Support
  • Contact Us
  • Customer Help Center
  • Community
  • Developer Docs
  • Find a Partner
  • Become an affiliate
Company
  • About Us
  • Careers
  • Press & News
  • Investor Relations
  • Diversity, Equity & Inclusion
Terms of ServicePrivacy NoticeAcceptable Use PolicyLegal
EnglishJapanese (日本語)Korean (한국어)Español (Spain)Português (Brasil)Português (Portugal)FrançaisDeutsch
© 2025 Amplitude, Inc. All rights reserved. Amplitude is a registered trademark of Amplitude, Inc.

Recommended Reading

article card image
Read 
Product
Getting Started: Product Analytics Isn’t Just for Analysts

Dec 5, 2025

5 min read

article card image
Read 
Insights
Vibe Check Part 3: When Vibe Marketing Goes Off the Rails

Dec 4, 2025

8 min read

article card image
Read 
Customers
How CAFU Tripled Engagement and Boosted Conversions 20%+

Dec 4, 2025

8 min read

article card image
Read 
Customers
The Future is Data-Driven: Introducing the Winners of the Ampy Awards 2025

Dec 2, 2025

6 min read

Explore Related Content

Integration
Using Behavioral Analytics for Growth with the Amplitude App on HubSpot

Jun 17, 2024

10 min read

Personalization
Identity Resolution: The Secret to a 360-Degree Customer View

Feb 16, 2024

10 min read

Product
Inside Warehouse-native Amplitude: A Technical Deep Dive

Jun 27, 2023

15 min read

Guide
5 Proven Strategies to Boost Customer Engagement

Jul 12, 2023

Video
Designing High-Impact Experiments

May 13, 2024

Startup
9 Direct-to-consumer Marketing Tactics to Accelerate Ecommerce Growth

Feb 20, 2024

10 min read

Growth
Leveraging Analytics to Achieve Product-Market Fit

Jul 20, 2023

10 min read

Product
iFood Serves Up 54% More Checkouts with Error Message Makeover

Oct 7, 2024

9 min read

Blog
InsightsProductCompanyCustomers
Topics

101

AI

APJ

Acquisition

Adobe Analytics

Amplify

Amplitude Academy

Amplitude Activation

Amplitude Analytics

Amplitude Audiences

Amplitude Community

Amplitude Feature Experimentation

Amplitude Guides and Surveys

Amplitude Heatmaps

Amplitude Made Easy

Amplitude Session Replay

Amplitude Web Experimentation

Amplitude on Amplitude

Analytics

B2B SaaS

Behavioral Analytics

Benchmarks

Churn Analysis

Cohort Analysis

Collaboration

Consolidation

Conversion

Customer Experience

Customer Lifetime Value

DEI

Data

Data Governance

Data Management

Data Tables

Digital Experience Maturity

Digital Native

Digital Transformer

EMEA

Ecommerce

Employee Resource Group

Engagement

Event Tracking

Experimentation

Feature Adoption

Financial Services

Funnel Analysis

Getting Started

Google Analytics

Growth

Healthcare

How I Amplitude

Implementation

Integration

LATAM

Life at Amplitude

MCP

Machine Learning

Marketing Analytics

Media and Entertainment

Metrics

Modern Data Series

Monetization

Next Gen Builders

North Star Metric

Partnerships

Personalization

Pioneer Awards

Privacy

Product 50

Product Analytics

Product Design

Product Management

Product Releases

Product Strategy

Product-Led Growth

Recap

Retention

Startup

Tech Stack

The Ampys

Warehouse-native Amplitude