Platform

AI

AI Agents
Sense, decide, and act faster than ever before
AI Visibility
See how your brand shows up in AI search
AI Feedback
Distill what your customers say they want
Amplitude MCP
Insights from the comfort of your favorite AI tool

Insights

Product Analytics
Understand the full user journey
Marketing Analytics
Get the metrics you need with one line of code
Session Replay
Visualize sessions based on events in your product
Heatmaps
Visualize clicks, scrolls, and engagement

Action

Guides and Surveys
Guide your users and collect feedback
Feature Experimentation
Innovate with personalized product experiences
Web Experimentation
Drive conversion with A/B testing powered by data
Feature Management
Build fast, target easily, and learn as you ship
Activation
Unite data across teams

Data

Warehouse-native Amplitude
Unlock insights from your data warehouse
Data Governance
Complete data you can trust
Security & Privacy
Keep your data secure and compliant
Integrations
Connect Amplitude to hundreds of partners
Solutions
Solutions that drive business results
Deliver customer value and drive business outcomes
Amplitude Solutions →

Industry

Financial Services
Personalize the banking experience
B2B
Maximize product adoption
Media
Identify impactful content
Healthcare
Simplify the digital healthcare experience
Ecommerce
Optimize for transactions

Use Case

Acquisition
Get users hooked from day one
Retention
Understand your customers like no one else
Monetization
Turn behavior into business

Team

Product
Fuel faster growth
Data
Make trusted data accessible
Engineering
Ship faster, learn more
Marketing
Build customers for life
Executive
Power decisions, shape the future

Size

Startups
Free analytics tools for startups
Enterprise
Advanced analytics for scaling businesses
Resources

Learn

Blog
Thought leadership from industry experts
Resource Library
Expertise to guide your growth
Compare
See how we stack up against the competition
Glossary
Learn about analytics, product, and technical terms
Explore Hub
Detailed guides on product and web analytics

Connect

Community
Connect with peers in product analytics
Events
Register for live or virtual events
Customers
Discover why customers love Amplitude
Partners
Accelerate business value through our ecosystem

Support & Services

Customer Help Center
All support resources in one place: policies, customer portal, and request forms
Developer Hub
Integrate and instrument Amplitude
Academy & Training
Become an Amplitude pro
Professional Services
Drive business success with expert guidance and support
Product Updates
See what's new from Amplitude

Tools

Benchmarks
Understand how your product compares
Templates
Kickstart your analysis with custom dashboard templates
Tracking Guides
Learn how to track events and metrics with Amplitude
Maturity Model
Learn more about our digital experience maturity model
Pricing
LoginContact salesGet started

AI

AI AgentsAI VisibilityAI FeedbackAmplitude MCP

Insights

Product AnalyticsMarketing AnalyticsSession ReplayHeatmaps

Action

Guides and SurveysFeature ExperimentationWeb ExperimentationFeature ManagementActivation

Data

Warehouse-native AmplitudeData GovernanceSecurity & PrivacyIntegrations
Amplitude Solutions →

Industry

Financial ServicesB2BMediaHealthcareEcommerce

Use Case

AcquisitionRetentionMonetization

Team

ProductDataEngineeringMarketingExecutive

Size

StartupsEnterprise

Learn

BlogResource LibraryCompareGlossaryExplore Hub

Connect

CommunityEventsCustomersPartners

Support & Services

Customer Help CenterDeveloper HubAcademy & TrainingProfessional ServicesProduct Updates

Tools

BenchmarksTemplatesTracking GuidesMaturity Model
LoginSign Up

15 Behaviors of Healthy, Data-Informed Product Teams

A list of fifteen behaviors commonly observed on healthy, data-informed product teams.
Insights

Feb 22, 2022

6 min read

John Cutler

John Cutler

Former Product Evangelist, Amplitude

Behaviors of healthy product teams

I frequently get asked the following question:

You talk to lots of teams. What behaviors do you observe on the highest performing data-informed product teams?

I tend to bristle at “high performing” (because product is highly contextual), but I do my best to answer. What behaviors do I observe on healthy, data-informed product teams?

More healthy skepticism about insights and analyses. Team members offer up their work for more scrutiny and improvement. The team celebrates surfacing issues (instead of seeing it as a setback).

In a similar vein, analysis is a team sport. You are much more likely to observe people pairing on insights—either in real-time, or async. They approach analysis in ways that make it easy for someone to “pick up” their work (e.g. notebooks, annotations, etc.) When people leave the company, they leave with much more data literacy than they started, and they owe that to their teammates. You are more likely to see things like weekly data jams, open office hours, and Slack channels for insight feedback.

They don’t throw new hires into the deep end when it comes to understanding the data and the tools. We observe onboarding activities like walking new hires through the taxonomy, what triggers what, and how the tools work. The savviest Amplitude customers run their own data academies and maintain helpful documentation around analytics. When SQL is required—and hopefully it isn’t for everyone—they REALLY teach it.

Instrumentation/telemetry is part of the normal design and development workflow. No “instrumentation tickets”. Not crammed in as an afterthought. No heavy duty dashboard specs handed down from above. Whenever possible, the team that has the most domain awareness does the instrumentation. Overall, there is much less drama and fanfare around instrumentation.

There’s a strong focus on the usability and accessibility of the data. Consistent naming conventions. Human readable/understandable names. Starter projects. Data dictionaries. Frequent audits and cleanups.

Much, much more insight re-use. Less re-inventing the wheel (recreating insights because of low data trust). Branching off of prior work in new and interesting ways. The delta here is HUGE. When data trust is low, the only way someone trusts what they see is if they do it themselves.

The team measures the impact of everything they ship, but uses the right approach for the job. Sometimes gut-checking basic counts or a simple linear regression does the trick. Sometimes A/B testing, multivariate testing (MVT), or multi-armed bandit testing is the way to go. Often, getting on the phone and calling customers is the best option. The key point is that they commit to doing their best, within reason, to understand the impact of their work. This includes rituals like product reviews, learning reviews, and insight jams.

There is a focus on measuring to LEARN vs. measuring to “keep score”, proxy trust, gauge performance, or prove a point. You are much less likely to observe someone, in the presence of disconfirming information, saying “well, we can’t change that metric because everyone agreed to it.” Instead, they iterate on what and how they measure! Classic double-loop learning. One big way this manifests is in the amount of good data-storytelling vs. data-for-pitching, and a focus on continuous improvement in terms of methods/approaches.

They kill features and experiments. Experiments “fail” as often as they succeed. While not everyone’s favorite moment, it also isn’t frowned upon or shunned. A team that succeeds all the time is either lying to themselves, or playing it far too safe.

Analytics experts operate less as a question/answer service, and more as force multipliers. Up-leveling the org. Scaling trusted expertise. The upholders and evangelists for the craft.

They use data as much (or more) for framing the opportunity and promising options, as they do for “setting success metrics” or “measuring outcomes”. In this sense, measurement is not tacked on. We observe more exploratory analysis to form hypotheses, shape strategy, and “think outside the box”. More ad-hoc exploration on the part of designers and developers as they consider how to intervene. More fluid, and less back-loaded.

They have a standard set of artifacts for each team, initiative, and strategic pillar. Every initiative has a dashboard, one or more notebooks, and some documentation on the relevant events. The department has a set of dashboards, and notebooks related to their North Star Metric and Inputs. Same with each experiment. In short, less re-inventing the wheel with each initiative.

A healthy approach to reducing uncertainty and decision making under conditions of uncertainty. Not seeking ultimate certainty. Avoiding certainty theater. Realizing when they SHOULD ignore the data, most notably when they are trying something that involves new behaviors.

Higher levels of confidence when it comes to taking measured risks / experimenting. They experiment safely, not haphazardly.

In many ways, measurement and data becomes part of how they work. It is not a big deal. It is not all that special. It is neither deified or vilified. It just is.

The list, summarized:

  1. Healthy skepticism
  2. Analysis as team sport
  3. Good onboarding
  4. Instrumentation part of normal workflow
  5. Focus on data usability
  6. Insight re-use
  7. Measure impact of all work (using reasonable methods)
  8. Measure to learn vs. control/manage
  9. Kill features/experiments
  10. Analytics experts as force multipliers
  11. Use data to frame strategy, shape opportunities
  12. Standard set of artifacts
  13. Healthy approach to grappling w/uncertainty
  14. High levels of confidence when safely experimenting
  15. Measurement “just is”
About the author
John Cutler

John Cutler

Former Product Evangelist, Amplitude

More from John

John Cutler is a former product evangelist and coach at Amplitude.

More from John
Topics
Platform
  • Product Analytics
  • Feature Experimentation
  • Feature Management
  • Web Analytics
  • Web Experimentation
  • Session Replay
  • Activation
  • Guides and Surveys
  • AI Agents
  • AI Visibility
  • AI Feedback
  • Amplitude MCP
Compare us
  • Adobe
  • Google Analytics
  • Mixpanel
  • Heap
  • Optimizely
  • Fullstory
  • Pendo
Resources
  • Resource Library
  • Blog
  • Product Updates
  • Amp Champs
  • Amplitude Academy
  • Events
  • Glossary
Partners & Support
  • Contact Us
  • Customer Help Center
  • Community
  • Developer Docs
  • Find a Partner
  • Become an affiliate
Company
  • About Us
  • Careers
  • Press & News
  • Investor Relations
  • Diversity, Equity & Inclusion
Terms of ServicePrivacy NoticeAcceptable Use PolicyLegal
EnglishJapanese (日本語)Korean (한국어)Español (Spain)Português (Brasil)Português (Portugal)FrançaisDeutsch
© 2025 Amplitude, Inc. All rights reserved. Amplitude is a registered trademark of Amplitude, Inc.
Blog
InsightsProductCompanyCustomers
Topics

101

AI

APJ

Acquisition

Adobe Analytics

Amplify

Amplitude Academy

Amplitude Activation

Amplitude Analytics

Amplitude Audiences

Amplitude Community

Amplitude Feature Experimentation

Amplitude Guides and Surveys

Amplitude Heatmaps

Amplitude Made Easy

Amplitude Session Replay

Amplitude Web Experimentation

Amplitude on Amplitude

Analytics

B2B SaaS

Behavioral Analytics

Benchmarks

Churn Analysis

Cohort Analysis

Collaboration

Consolidation

Conversion

Customer Experience

Customer Lifetime Value

DEI

Data

Data Governance

Data Management

Data Tables

Digital Experience Maturity

Digital Native

Digital Transformer

EMEA

Ecommerce

Employee Resource Group

Engagement

Event Tracking

Experimentation

Feature Adoption

Financial Services

Funnel Analysis

Getting Started

Google Analytics

Growth

Healthcare

How I Amplitude

Implementation

Integration

LATAM

Life at Amplitude

MCP

Machine Learning

Marketing Analytics

Media and Entertainment

Metrics

Modern Data Series

Monetization

Next Gen Builders

North Star Metric

Partnerships

Personalization

Pioneer Awards

Privacy

Product 50

Product Analytics

Product Design

Product Management

Product Releases

Product Strategy

Product-Led Growth

Recap

Retention

Startup

Tech Stack

The Ampys

Warehouse-native Amplitude

Recommended Reading

article card image
Read 
Product
Getting Started: Product Analytics Isn’t Just for Analysts

Dec 5, 2025

5 min read

article card image
Read 
Insights
Vibe Check Part 3: When Vibe Marketing Goes Off the Rails

Dec 4, 2025

8 min read

article card image
Read 
Customers
How CAFU Tripled Engagement and Boosted Conversions 20%+

Dec 4, 2025

8 min read

article card image
Read 
Customers
The Future is Data-Driven: Introducing the Winners of the Ampy Awards 2025

Dec 2, 2025

6 min read

Explore Related Content

Integration
Using Behavioral Analytics for Growth with the Amplitude App on HubSpot

Jun 17, 2024

10 min read

Personalization
Identity Resolution: The Secret to a 360-Degree Customer View

Feb 16, 2024

10 min read

Product
Inside Warehouse-native Amplitude: A Technical Deep Dive

Jun 27, 2023

15 min read

Guide
5 Proven Strategies to Boost Customer Engagement

Jul 12, 2023

Video
Designing High-Impact Experiments

May 13, 2024

Startup
9 Direct-to-consumer Marketing Tactics to Accelerate Ecommerce Growth

Feb 20, 2024

10 min read

Growth
Leveraging Analytics to Achieve Product-Market Fit

Jul 20, 2023

10 min read

Product
iFood Serves Up 54% More Checkouts with Error Message Makeover

Oct 7, 2024

9 min read