Platform

AI

AI Agents
Sense, decide, and act faster than ever before
AI Visibility
See how your brand shows up in AI search
AI Feedback
Distill what your customers say they want
Amplitude MCP
Insights from the comfort of your favorite AI tool

Insights

Product Analytics
Understand the full user journey
Marketing Analytics
Get the metrics you need with one line of code
Session Replay
Visualize sessions based on events in your product
Heatmaps
Visualize clicks, scrolls, and engagement

Action

Guides and Surveys
Guide your users and collect feedback
Feature Experimentation
Innovate with personalized product experiences
Web Experimentation
Drive conversion with A/B testing powered by data
Feature Management
Build fast, target easily, and learn as you ship
Activation
Unite data across teams

Data

Warehouse-native Amplitude
Unlock insights from your data warehouse
Data Governance
Complete data you can trust
Security & Privacy
Keep your data secure and compliant
Integrations
Connect Amplitude to hundreds of partners
Solutions
Solutions that drive business results
Deliver customer value and drive business outcomes
Amplitude Solutions →

Industry

Financial Services
Personalize the banking experience
B2B
Maximize product adoption
Media
Identify impactful content
Healthcare
Simplify the digital healthcare experience
Ecommerce
Optimize for transactions

Use Case

Acquisition
Get users hooked from day one
Retention
Understand your customers like no one else
Monetization
Turn behavior into business

Team

Product
Fuel faster growth
Data
Make trusted data accessible
Engineering
Ship faster, learn more
Marketing
Build customers for life
Executive
Power decisions, shape the future

Size

Startups
Free analytics tools for startups
Enterprise
Advanced analytics for scaling businesses
Resources

Learn

Blog
Thought leadership from industry experts
Resource Library
Expertise to guide your growth
Compare
See how we stack up against the competition
Glossary
Learn about analytics, product, and technical terms
Explore Hub
Detailed guides on product and web analytics

Connect

Community
Connect with peers in product analytics
Events
Register for live or virtual events
Customers
Discover why customers love Amplitude
Partners
Accelerate business value through our ecosystem

Support & Services

Customer Help Center
All support resources in one place: policies, customer portal, and request forms
Developer Hub
Integrate and instrument Amplitude
Academy & Training
Become an Amplitude pro
Professional Services
Drive business success with expert guidance and support
Product Updates
See what's new from Amplitude

Tools

Benchmarks
Understand how your product compares
Templates
Kickstart your analysis with custom dashboard templates
Tracking Guides
Learn how to track events and metrics with Amplitude
Maturity Model
Learn more about our digital experience maturity model
Pricing
LoginContact salesGet started

AI

AI AgentsAI VisibilityAI FeedbackAmplitude MCP

Insights

Product AnalyticsMarketing AnalyticsSession ReplayHeatmaps

Action

Guides and SurveysFeature ExperimentationWeb ExperimentationFeature ManagementActivation

Data

Warehouse-native AmplitudeData GovernanceSecurity & PrivacyIntegrations
Amplitude Solutions →

Industry

Financial ServicesB2BMediaHealthcareEcommerce

Use Case

AcquisitionRetentionMonetization

Team

ProductDataEngineeringMarketingExecutive

Size

StartupsEnterprise

Learn

BlogResource LibraryCompareGlossaryExplore Hub

Connect

CommunityEventsCustomersPartners

Support & Services

Customer Help CenterDeveloper HubAcademy & TrainingProfessional ServicesProduct Updates

Tools

BenchmarksTemplatesTracking GuidesMaturity Model
LoginSign Up

Data Lake vs. Data Warehouse vs. Data Lakehouse: Understanding the Differences

Data lakes, data warehouses, and data lakehouses are three of the most common data storage options. Educate yourself to make the best choice for you and your business.
Insights

May 3, 2024

10 min read

Michele Morales

Michele Morales

Senior Product Marketing Manager, Amplitude

Data lake vs warehouse vs lakehouse

Browse by category

  • What is a data lake?
  • What is a data warehouse?
  • What is a data lakehouse?
  • Comparing data lakes vs. data warehouses vs. data lakehouses
  • Which data storage option is best for you?
  • Incorporate Amplitude into your data stack

Think about the myriad of tools people in your company use to do their jobs.

You and your colleagues depend on product management software, marketing tools, and countless other software solutions daily. Most of those tools generate valuable data. Your customers also generate data when they use your product, visit your website, or perform other trackable actions.

What should you do with all that data? You can store the information to extract insights, and there are a couple of options for how and where to do it. Data lakes, data warehouses, and data lakehouses are three of the most common data storage options.

Each has advantages and disadvantages, and the best choice depends on data volumes, the level of scalability you need, and other factors.

Key takeaways

  • Many companies choose a data lake, data warehouse, or data lakehouse to store data they want to analyze and use to inform business decisions.
  • Data lakes store large volumes of structured, semi-structured, and unstructured data. Data warehouses are more organized and designed to store structured data. Data lakehouses offer a hybrid approach.
  • The best data storage solution for your company depends on various factors, including data type and format, performance requirements, and data volume.

What is a data lake?

Data lakes store large volumes of data in its native format, whether structured, semi-structured, or unstructured. They deliver the most value when they’re implemented alongside other infrastructure that supports machine learning, predictive analytics, and other “big data” initiatives.

The three main benefits of data lakes are scalability, cost-effectiveness, and flexibility. They reliably handle petabytes of data, which is a massive volume—one petabyte equals one million gigabytes. This enables you to scale storage up and down as needed affordably. Since data lakes store all kinds of data, they can also adapt to ever-changing business requirements.

Two potential downsides to using a data lake are data governance issues and performance.

Data lakes store many different types of data, which can lead to data integrity issues. When using a data lake, it’s important to follow data governance best practices to ensure data accuracy, consistency, and overall data quality.

The sheer volume of data in a lake can also be problematic—if data is poorly organized, redundant, or siloed, querying speeds and overall performance also suffer.

When to use a data lake: Data lakes are most frequently used in streaming, machine learning, and data science scenarios. For example, a media company could use a data lake to store and analyze user interaction data, including viewing habits, preferences, and engagement metrics.

What is a data warehouse?

Think of a data warehouse as a well-organized storage room. Data warehouses store structured data from a variety of different sources. Data is stored in a relational structure, meaning that data inside the warehouse is neatly organized into rows, columns, and tables.

Data undergoes a process called data ingestion before getting stored in a data warehouse. Data ingestion involves collecting, processing, and preparing data for storage. Here’s how it works:

  1. Extract data from various sources.
  2. Transform the data by cleaning, processing, and converting it into the desired format.
  3. Load the newly transformed data into your data warehouse.

The data ingestion process enhances data quality and consistency. The benefits of data warehouses include streamlined data processing practices, improved data analysis, and reporting abilities. Many of the most popular data warehouses also integrate with various business intelligence tools, making it easier to use data to drive decision-making.

Data warehouses aren’t without their downsides. Implementing and maintaining a data warehouse can be costly. Ingesting and integrating data from various sources is sometimes complex and time consuming, especially when you’re dealing with different data formats and structures. Additionally, handling unstructured data sometimes requires additional preprocessing, leading to potential delays in data processing.

When to use a data warehouse: Data warehouses are well suited for analyzing structured data for business intelligence and reporting purposes. For example, an ecommerce company could use a data warehouse to store sales and marketing-related data about acquisition channels, purchases, and campaign performance.

What is a data lakehouse?

Data lakehouses combine features of data lakes and data warehouses. Like a data lake, they offer a unified storage platform for diverse data types. However, they also offer powerful data processing and analytics capabilities like a data warehouse.

Essentially, data lakehouses use the data structure and management principles found in data warehousing and combine them with a data lake's flexibility and low-cost storage.

Lakehouses address some common challenges associated with data lakes, including data governance and the potential for slower retrieval speeds.

On the governance side, data lakehouses include elements of data warehousing, like consistent data structures and validation controls. These tactics help maintain data integrity. Since the data has some structure and organization, data retrieval and querying are also faster.

The main disadvantage of a data lakehouse is the complexity. Implementing and managing a data lakehouse involves a high degree of technical expertise, even more than implementing and managing a data lake or warehouse.

When to use a data lakehouse: Many companies use a data lakehouse to simultaneously execute multiple data processing operations, such as retrieval, storage, and analysis. For example, a healthcare company could use a data lakehouse to store patient records, real-time sensor data, and clinical trial data.

Comparing data lakes vs. data warehouses vs. data lakehouses

Now that you understand the basics of each data storage solution, it’s time to look at how each one handles two key areas:

  • Data structure and schema refer to how data is organized and stored within the system. Schema defines the organization and structure of the data itself, including its format and any rules and limits applied to the data fields.
  • Querying and performance encompass how the storage system processes and retrieves data. This includes how quickly and efficiently the system executes queries, generates reports, and performs various analytical tasks.

Data lakes use a schema-on-read approach for data structure. That means the structure and requirements for organizing data are applied when it’s being read, not when it’s initially stored. A schema-on-read approach gives you more flexibility when handling diverse and unstructured data.

Data warehouses use a schema-on-write approach, meaning data must adhere to a predefined structure when it’s loaded into the warehouse. This provides data consistency and enables for more efficient data processing and analysis.

Data lakehouses strike a balance between structured and unstructured data needs. They enable you to store unstructured data and then apply structure when it’s retrieved. Lakehouses also support schema evolution by enabling changes to data structures as business needs evolve, like adding new data formats and modifying existing formats.

Not surprisingly, how a data storage platform handles data structure and schema directly impacts speed and performance.

While data lakes excel at handling massive volumes of diverse data, the system interprets the structure of your data every time it's accessed. This can lead to processing delays, a problem for companies needing real-time analytics capabilities.

Data warehouses boast faster querying response speeds thanks to their data's well-organized and highly structured nature. But there’s a cost to this upside—you’ll spend more time preparing data, which limits how quickly you can load data into your warehouse.

Data lakehouses are the best of both worlds. Like a data lake, they support various ingestion types, which results in quick loading speeds. They also incorporate structured data organization similar to a warehouse without the same degree of rigidity. It’s a combination that delivers fast query response times plus efficient processing and analysis.

Which data storage option is best for you?

Here are some general guidelines when selecting between a data lake, data warehouse, and data lakehouse:

  • Use a data lake for raw, unstructured data, like server logs and other system-generated data.
  • Use a data warehouse to analyze structured, historical data, including customer information, transaction records, and inventory data.
  • Use a data lakehouse to collect and analyze various data types and formats.

Data storage is a complicated topic. It’s not uncommon for a company to use several types of data storage for different purposes. Ultimately, the best choice for your company will depend on scalability, performance, and other technical considerations.

Incorporate Amplitude into your data stack

Data storage and management is a considerable part of your overall data infrastructure. Even if you aren’t responsible for managing that infrastructure, understanding the basics will increase your data literacy and help you make better data-driven decisions.

Whether you choose a data lake, data warehouse, or data lakehouse, storage is just one part of the modern data stack that supports data analytics at your company. Different analytics tools can enable data collection, analysis, and reporting.

Amplitude’s digital analytics platform fits into any existing data environment and gives you insights into the full customer journey. Use it to optimize customer acquisition, improve retention, and increase your bottom line.

Sign up for free today to start making more strategic, data-driven decisions.


About the author
Michele Morales

Michele Morales

Senior Product Marketing Manager, Amplitude

More from Michele

Michele Morales is a product marketing manager at Amplitude, focusing on go-to-market solutions for enterprise customers.

More from Michele
Topics

Data

Data Management

Data Governance

101

Platform
  • Product Analytics
  • Feature Experimentation
  • Feature Management
  • Web Analytics
  • Web Experimentation
  • Session Replay
  • Activation
  • Guides and Surveys
  • AI Agents
  • AI Visibility
  • AI Feedback
  • Amplitude MCP
Compare us
  • Adobe
  • Google Analytics
  • Mixpanel
  • Heap
  • Optimizely
  • Fullstory
  • Pendo
Resources
  • Resource Library
  • Blog
  • Product Updates
  • Amp Champs
  • Amplitude Academy
  • Events
  • Glossary
Partners & Support
  • Contact Us
  • Customer Help Center
  • Community
  • Developer Docs
  • Find a Partner
  • Become an affiliate
Company
  • About Us
  • Careers
  • Press & News
  • Investor Relations
  • Diversity, Equity & Inclusion
Terms of ServicePrivacy NoticeAcceptable Use PolicyLegal
EnglishJapanese (日本語)Korean (한국어)Español (Spain)Português (Brasil)Português (Portugal)FrançaisDeutsch
© 2025 Amplitude, Inc. All rights reserved. Amplitude is a registered trademark of Amplitude, Inc.
Blog
InsightsProductCompanyCustomers
Topics

101

AI

APJ

Acquisition

Adobe Analytics

Amplify

Amplitude Academy

Amplitude Activation

Amplitude Analytics

Amplitude Audiences

Amplitude Community

Amplitude Feature Experimentation

Amplitude Guides and Surveys

Amplitude Heatmaps

Amplitude Made Easy

Amplitude Session Replay

Amplitude Web Experimentation

Amplitude on Amplitude

Analytics

B2B SaaS

Behavioral Analytics

Benchmarks

Churn Analysis

Cohort Analysis

Collaboration

Consolidation

Conversion

Customer Experience

Customer Lifetime Value

DEI

Data

Data Governance

Data Management

Data Tables

Digital Experience Maturity

Digital Native

Digital Transformer

EMEA

Ecommerce

Employee Resource Group

Engagement

Event Tracking

Experimentation

Feature Adoption

Financial Services

Funnel Analysis

Getting Started

Google Analytics

Growth

Healthcare

How I Amplitude

Implementation

Integration

LATAM

Life at Amplitude

MCP

Machine Learning

Marketing Analytics

Media and Entertainment

Metrics

Modern Data Series

Monetization

Next Gen Builders

North Star Metric

Partnerships

Personalization

Pioneer Awards

Privacy

Product 50

Product Analytics

Product Design

Product Management

Product Releases

Product Strategy

Product-Led Growth

Recap

Retention

Startup

Tech Stack

The Ampys

Warehouse-native Amplitude

Recommended Reading

article card image
Read 
Product
Getting Started: Product Analytics Isn’t Just for Analysts

Dec 5, 2025

5 min read

article card image
Read 
Insights
Vibe Check Part 3: When Vibe Marketing Goes Off the Rails

Dec 4, 2025

8 min read

article card image
Read 
Customers
How CAFU Tripled Engagement and Boosted Conversions 20%+

Dec 4, 2025

8 min read

article card image
Read 
Customers
The Future is Data-Driven: Introducing the Winners of the Ampy Awards 2025

Dec 2, 2025

6 min read

Explore Related Content

Integration
Using Behavioral Analytics for Growth with the Amplitude App on HubSpot

Jun 17, 2024

10 min read

Personalization
Identity Resolution: The Secret to a 360-Degree Customer View

Feb 16, 2024

10 min read

Product
Inside Warehouse-native Amplitude: A Technical Deep Dive

Jun 27, 2023

15 min read

Guide
5 Proven Strategies to Boost Customer Engagement

Jul 12, 2023

Video
Designing High-Impact Experiments

May 13, 2024

Startup
9 Direct-to-consumer Marketing Tactics to Accelerate Ecommerce Growth

Feb 20, 2024

10 min read

Growth
Leveraging Analytics to Achieve Product-Market Fit

Jul 20, 2023

10 min read

Product
iFood Serves Up 54% More Checkouts with Error Message Makeover

Oct 7, 2024

9 min read