Platform

AI

AI Agents
Sense, decide, and act faster than ever before
AI Visibility
See how your brand shows up in AI search
AI Feedback
Distill what your customers say they want
Amplitude MCP
Insights from the comfort of your favorite AI tool

Insights

Product Analytics
Understand the full user journey
Marketing Analytics
Get the metrics you need with one line of code
Session Replay
Visualize sessions based on events in your product
Heatmaps
Visualize clicks, scrolls, and engagement

Action

Guides and Surveys
Guide your users and collect feedback
Feature Experimentation
Innovate with personalized product experiences
Web Experimentation
Drive conversion with A/B testing powered by data
Feature Management
Build fast, target easily, and learn as you ship
Activation
Unite data across teams

Data

Warehouse-native Amplitude
Unlock insights from your data warehouse
Data Governance
Complete data you can trust
Security & Privacy
Keep your data secure and compliant
Integrations
Connect Amplitude to hundreds of partners
Solutions
Solutions that drive business results
Deliver customer value and drive business outcomes
Amplitude Solutions →

Industry

Financial Services
Personalize the banking experience
B2B
Maximize product adoption
Media
Identify impactful content
Healthcare
Simplify the digital healthcare experience
Ecommerce
Optimize for transactions

Use Case

Acquisition
Get users hooked from day one
Retention
Understand your customers like no one else
Monetization
Turn behavior into business

Team

Product
Fuel faster growth
Data
Make trusted data accessible
Engineering
Ship faster, learn more
Marketing
Build customers for life
Executive
Power decisions, shape the future

Size

Startups
Free analytics tools for startups
Enterprise
Advanced analytics for scaling businesses
Resources

Learn

Blog
Thought leadership from industry experts
Resource Library
Expertise to guide your growth
Compare
See how we stack up against the competition
Glossary
Learn about analytics, product, and technical terms
Explore Hub
Detailed guides on product and web analytics

Connect

Community
Connect with peers in product analytics
Events
Register for live or virtual events
Customers
Discover why customers love Amplitude
Partners
Accelerate business value through our ecosystem

Support & Services

Customer Help Center
All support resources in one place: policies, customer portal, and request forms
Developer Hub
Integrate and instrument Amplitude
Academy & Training
Become an Amplitude pro
Professional Services
Drive business success with expert guidance and support
Product Updates
See what's new from Amplitude

Tools

Benchmarks
Understand how your product compares
Templates
Kickstart your analysis with custom dashboard templates
Tracking Guides
Learn how to track events and metrics with Amplitude
Maturity Model
Learn more about our digital experience maturity model
Pricing
LoginContact salesGet started

AI

AI AgentsAI VisibilityAI FeedbackAmplitude MCP

Insights

Product AnalyticsMarketing AnalyticsSession ReplayHeatmaps

Action

Guides and SurveysFeature ExperimentationWeb ExperimentationFeature ManagementActivation

Data

Warehouse-native AmplitudeData GovernanceSecurity & PrivacyIntegrations
Amplitude Solutions →

Industry

Financial ServicesB2BMediaHealthcareEcommerce

Use Case

AcquisitionRetentionMonetization

Team

ProductDataEngineeringMarketingExecutive

Size

StartupsEnterprise

Learn

BlogResource LibraryCompareGlossaryExplore Hub

Connect

CommunityEventsCustomersPartners

Support & Services

Customer Help CenterDeveloper HubAcademy & TrainingProfessional ServicesProduct Updates

Tools

BenchmarksTemplatesTracking GuidesMaturity Model
LoginSign Up

Why Is Data Validation Important?

Learn how to give your teams confidence in their work with techniques to ensure your data is reliable.
Insights

Dec 17, 2022

8 min read

Franciska Dethlefsen

Franciska Dethlefsen

Former Head of Growth Marketing, Amplitude

Why Is Data Validation Important?

Editor’s note: This article was originally published on the Iteratively blog on February 18, 2021.


Key takeaways:

  • Data validation can go a long way in helping build a data-driven culture.
  • Reliable data is often a business’s most valuable asset, offering insights that improve the customer experience and drive revenue.
  • Bad data is not only a drain on resources–it often means that teams will spend hours trying to verify it–but it erodes confidence and stymies innovation.
  • Using data validation and other techniques proactively can fight “data decay” and prevent other issues before they affect customers.

Businesses rely on high-quality data to make critical decisions for their organization. If data is not accurate and complete, end-users won’t not trust the data, which limits their use of it. Data validation is a set of processes and techniques that help data teams uphold the quality of their data.

Now, let’s dive deeper into why data validation is important for businesses and data teams.

Data validation makes it easier for companies to trust their data

When businesses don’t trust their data, they are more reluctant to use it and trust the analysts/engineers delivering the data to them. People stop trusting their data when it’s inaccurate, invalid, and no longer useful to them. The lack of trust doesn’t happen overnight for most businesses. Inadequate tooling, poorly managed processes, and human error, over time, are some of the contributing factors to why businesses are losing fate in their data.

And that’s a big loss–in more ways than one.

For one, reliable data–“good data”–is often an organization’s most valuable asset, providing insights that can help them stand out from their competitors and drive revenue.

By contrast, bad data is a drain on company resources. For instance, companies waste $180,000 annually on undeliverable mail because four percent of their mailing-list addresses are inaccurate.

Bad data also often means organizations spend more time attempting to dig it up themselves. According to data-axle.com, sales reps spend 20 percent of their time researching leads. If time is money, that’s a lot of money wasted thanks to bad data. Even worse: bad data can in turn erode employee confidence.

Fighting “data decay”

Good data is valuable and hard to come by, especially as time goes on. Why is it hard to keep up with data quality as time goes on? Over time data starts to decay. What we mean by data decay is data that was once accurate is now outdated. Could it be outdated because a user’s address changed? Or did your business begin collecting a new data field for users that is now incomplete for a majority of existing users? Data decay will happen no matter how great of a process you have in place at your organization.

However, validating your data can assist your organization in reducing the potential errors caused by data decay. While it might not be a perfect solution, it will identify where data is missing, incomplete, inconsistent, and inaccurate. Data validation at the client or processing state won’t help with decay because data changes over time and should constantly be updated in your warehouse to make sure it contains the most up-to-date information. Over time, validating your data will create a better customer experience, because you will be able to target advertisements, emails, and calls to customers based on their potential needs. Regain the trust that might be lost in your organization, and start validating your data.

Data validation builds engineer confidence

We just mentioned that data validation affects the whole organization, but how does it affect engineers in your organization? Well, for starters, data workers are less confident about the quality of data at their organization than management is, with only 31% of data workers confident about the quality of data.

Why is it important for engineers to be confident about their company’s data?

When engineers have confidence in the data, they spend less time worrying and showing stakeholders that the data is accurate. If the data has been wrong before, engineers, in most cases, are told, “Prove to me why this is right.” After a while, this gets old, and engineers’ time can be spent completing other engineering tasks that provide value to a product or feature.

What can engineers do to gain confidence in the quality of data again?

Engineers can put together a data validation process to ensure that their data is accurate and complete. Once an afterthought or completely ignored in being tested, data is now tested and part of the software development life cycle. Data can be considered a first-class citizen in the development process and can be tested and validated alongside the codebase.

Why is data validation important for engineers?

As companies have adopted a data-driven approach, data accuracy and completeness are far more important to organizations than 10 years ago. Back then, sampled data and simple dashboards were normal, and most organizations did not have a data team.

Where did data engineers learn the concept of data testing?

Well, the concept of testing has been around in the software engineering field for a while. Developers have reaped the benefits of testing and fully understand how valuable it is for them in the software development life cycle.

With an effective data validation process, your team can ensure that data is up to date. Your team can begin to work faster than ever before and limit the number of headaches inaccurate data costs engineers. When you test your data and trust that it’s accurate, you are more confident in your ability to make changes to your code without being concerned about it affecting your data.

Data validation should be proactive, not reactive

Data validation is difficult to implement because most data teams and engineers rely on reactive data validation techniques causing validation to become an afterthought. Thus, engineers and analysts react to issues caused by the data rather than taking a proactive approach to catching issues before they reach end-users. While this is better than nothing, it still doesn’t allow data teams to take advantage of the benefits data validation brings to an organization.

Taking a proactive approach to data validation aids organizations in delivering useful data that can be understood throughout the organization. When applied properly, proactive data validation techniques, such as type safety, schematization, and unit testing, ensure that data is accurate and complete. These techniques enable engineers to crack down on the problems that caused the bad data in the first place. Inaccurate and incomplete data that once took days or even weeks to discover can now be avoided when taking a proactive data validation approach.

The importance of data validation

Data validation can reduce your time cleaning bad data later on. Analysts and engineers can waste hours of their day cleaning bad data, and, in return, businesses can lose revenue because that time could have been spent improving products if the data had been better. Digging through data to find inconsistencies and errors is annoying and wastes time for everyone involved.

Data validation helps engineers test their data to reduce the amount of bad data in their warehouse. To get the most out of data validation, organizations should take a collaborative approach to validate data. To ensure that the highest quality data is being produced, everyone needs to work together because data is a team sport. Why is it a team sport? Well, data validation doesn’t happen at one specific point. It can be done at multiple points in the data life cycle and requires everyone on the data team to work together to confirm that the data is correct.

To learn more about how Amplitude can help you implement data validation, sign up for a free account here or book a demo.

Self Service Demo
About the author
Franciska Dethlefsen

Franciska Dethlefsen

Former Head of Growth Marketing, Amplitude

More from Franciska

Franciska is the former Head of Growth Marketing at Amplitude, where she led the charge on user acquisition and PLG strategy and execution. Prior to that, she was Head of Growth at Iteratively (acquired by Amplitude) and before that Franciska built out the marketing function at Snowplow Analytics.

More from Franciska
Topics
Platform
  • Product Analytics
  • Feature Experimentation
  • Feature Management
  • Web Analytics
  • Web Experimentation
  • Session Replay
  • Activation
  • Guides and Surveys
  • AI Agents
  • AI Visibility
  • AI Feedback
  • Amplitude MCP
Compare us
  • Adobe
  • Google Analytics
  • Mixpanel
  • Heap
  • Optimizely
  • Fullstory
  • Pendo
Resources
  • Resource Library
  • Blog
  • Product Updates
  • Amp Champs
  • Amplitude Academy
  • Events
  • Glossary
Partners & Support
  • Contact Us
  • Customer Help Center
  • Community
  • Developer Docs
  • Find a Partner
  • Become an affiliate
Company
  • About Us
  • Careers
  • Press & News
  • Investor Relations
  • Diversity, Equity & Inclusion
Terms of ServicePrivacy NoticeAcceptable Use PolicyLegal
EnglishJapanese (日本語)Korean (한국어)Español (Spain)Português (Brasil)Português (Portugal)FrançaisDeutsch
© 2025 Amplitude, Inc. All rights reserved. Amplitude is a registered trademark of Amplitude, Inc.

Recommended Reading

article card image
Read 
Product
Getting Started: Product Analytics Isn’t Just for Analysts

Dec 5, 2025

5 min read

article card image
Read 
Insights
Vibe Check Part 3: When Vibe Marketing Goes Off the Rails

Dec 4, 2025

8 min read

article card image
Read 
Customers
How CAFU Tripled Engagement and Boosted Conversions 20%+

Dec 4, 2025

8 min read

article card image
Read 
Customers
The Future is Data-Driven: Introducing the Winners of the Ampy Awards 2025

Dec 2, 2025

6 min read

Explore Related Content

Integration
Using Behavioral Analytics for Growth with the Amplitude App on HubSpot

Jun 17, 2024

10 min read

Personalization
Identity Resolution: The Secret to a 360-Degree Customer View

Feb 16, 2024

10 min read

Product
Inside Warehouse-native Amplitude: A Technical Deep Dive

Jun 27, 2023

15 min read

Guide
5 Proven Strategies to Boost Customer Engagement

Jul 12, 2023

Video
Designing High-Impact Experiments

May 13, 2024

Startup
9 Direct-to-consumer Marketing Tactics to Accelerate Ecommerce Growth

Feb 20, 2024

10 min read

Growth
Leveraging Analytics to Achieve Product-Market Fit

Jul 20, 2023

10 min read

Product
iFood Serves Up 54% More Checkouts with Error Message Makeover

Oct 7, 2024

9 min read

Blog
InsightsProductCompanyCustomers
Topics

101

AI

APJ

Acquisition

Adobe Analytics

Amplify

Amplitude Academy

Amplitude Activation

Amplitude Analytics

Amplitude Audiences

Amplitude Community

Amplitude Feature Experimentation

Amplitude Guides and Surveys

Amplitude Heatmaps

Amplitude Made Easy

Amplitude Session Replay

Amplitude Web Experimentation

Amplitude on Amplitude

Analytics

B2B SaaS

Behavioral Analytics

Benchmarks

Churn Analysis

Cohort Analysis

Collaboration

Consolidation

Conversion

Customer Experience

Customer Lifetime Value

DEI

Data

Data Governance

Data Management

Data Tables

Digital Experience Maturity

Digital Native

Digital Transformer

EMEA

Ecommerce

Employee Resource Group

Engagement

Event Tracking

Experimentation

Feature Adoption

Financial Services

Funnel Analysis

Getting Started

Google Analytics

Growth

Healthcare

How I Amplitude

Implementation

Integration

LATAM

Life at Amplitude

MCP

Machine Learning

Marketing Analytics

Media and Entertainment

Metrics

Modern Data Series

Monetization

Next Gen Builders

North Star Metric

Partnerships

Personalization

Pioneer Awards

Privacy

Product 50

Product Analytics

Product Design

Product Management

Product Releases

Product Strategy

Product-Led Growth

Recap

Retention

Startup

Tech Stack

The Ampys

Warehouse-native Amplitude